
Simscape™

Language Guide

R2011b

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Simscape™ Language Guide

© COPYRIGHT 2008–2011 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
October 2008 Online only New for Version 3.0 (Release 2008b)
March 2009 Online only Revised for Version 3.1 (Release 2009a)
September 2009 Online only Revised for Version 3.2 (Release 2009b)
March 2010 Online only Revised for Version 3.3 (Release 2010a)
September 2010 Online only Revised for Version 3.4 (Release 2010b)
April 2011 Online only Revised for Version 3.5 (Release 2011a)
September 2011 Online only Revised for Version 3.6 (Release 2011b)

Contents

Simscape Language Fundamentals

1
What Is the Simscape Language? . 1-2
Overview . 1-2
Basic Example — Resistor . 1-2

Typical Tasks . 1-6

About Simscape Files . 1-8
Simscape File Type . 1-8
Model Types . 1-8
Basic File Structure . 1-9

Creating a New Physical Domain 1-13
When to Define a New Physical Domain 1-13
How to Define a New Physical Domain 1-14

Creating Custom Components . 1-15
Component Types and Prerequisites 1-15
How to Create a New Behavioral Model 1-15
Defining Domain-Wide Parameters 1-16
Adding a Custom Block Library . 1-17

Creating Custom Components and Domains

2
Declaring Domains and Components 2-2
Declaration Section Purpose . 2-2
Definitions . 2-3
Member Declarations . 2-3
Member Summary . 2-4
Declaring a Member as a Value with Unit 2-5

v

Declaring Through and Across Variables for a Domain . . . 2-6
Declaring Component Variables . 2-7
Declaring Component Parameters . 2-7
Declaring Domain Parameters . 2-10
Declaring Component Nodes . 2-10
Declaring Component Inputs and Outputs 2-11
Example — Declaring a Mechanical Rotational Domain . . 2-12
Example — Declaring a Spring Component 2-12

Defining Component Setup . 2-15
Setup Section Purpose . 2-15
Validating Parameters . 2-17
Computing Derived Parameters . 2-17
Setting Initial Conditions . 2-18
Defining Relationship Between Component Variables and
Nodes . 2-19

Defining Component Equations . 2-20
Equation Section Purpose . 2-20
Examples of Equations . 2-21
Specifying Mathematical Equality . 2-22
Use of Relational Operators in Equations 2-23
Equation Dimensionality . 2-25
Equation Continuity . 2-26
Using Conditional Expressions in Equations 2-27
Using Intermediate Terms in Equations 2-29
Programming Run-Time Errors and Warnings 2-39
Working with Physical Units in Equations 2-41

Putting It Together — Complete Component
Examples . 2-43
Mechanical Component Example — Spring 2-43
Electrical Component Example — Ideal Capacitor 2-44
No-Flow Component Example — Voltage Sensor 2-46
Grounding Component Example — Electrical Reference . . 2-47

Working with Domain Parameters 2-49
Propagation of Domain Parameters 2-49
Source Components . 2-50
Propagating Components . 2-50
Blocking Components . 2-51
Example of Using Domain Parameters 2-51

vi Contents

Attribute Lists . 2-58
Attribute Types . 2-58
Model Attributes . 2-58
Member Attributes . 2-59

Subclassing and Inheritance . 2-60

Simscape File Deployment

3
How to Generate Custom Block Libraries from
Simscape Component Files . 3-2
Workflow Overview . 3-2
Organizing Your Simscape Files . 3-3
Using Source Protection for Simscape Files 3-3
Converting Your Simscape Files . 3-4
When to Rebuild the Custom Library 3-5
Customizing the Library Name and Appearance 3-6
Customizing the Library Icon . 3-7
Example — Creating and Customizing Block Libraries . . . 3-8

Customizing the Block Name and Appearance 3-10
Default Block Display . 3-10
How to Customize the Block Name 3-12
How to Describe the Block Purpose 3-13
How to Specify Meaningful Names for the Block
Parameters . 3-14

How to Customize the Names and Locations of the Block
Ports . 3-15

How to Customize the Block Icon . 3-17
Example — Customized Block Display 3-19

Checking File and Model Dependencies 3-21
Why Check File and Model Dependencies? 3-21
Checking Dependencies of Protected Files 3-22
Checking Simscape File Dependencies 3-22
Checking Library Dependencies . 3-23
Checking Model Dependencies . 3-23

vii

Case Study — Creating a Basic Custom Block
Library . 3-25
Getting Started . 3-25
Building the Custom Library . 3-26
Adding a Block . 3-26
Adding Detail to a Component . 3-27
Adding a Component with an Internal Variable 3-29
Customizing the Block Icon . 3-31

Case Study — Creating an Electrochemical Library . . 3-32
Getting Started . 3-32
Building the Custom Library . 3-33
Defining a New Domain . 3-33
Structuring the Library . 3-36
Defining a Reference Component . 3-36
Defining an Ideal Source Component 3-37
Defining Measurement Components 3-38
Defining Basic Components . 3-40
Defining a Cross-Domain Interfacing Component 3-43
Customizing the Appearance of the Library 3-45
Using the Custom Components to Build a Model 3-46
References . 3-46

Language Reference

4

Simscape Foundation Domains

5
Domain Types and Directory Structure 5-2

Electrical Domain . 5-4

Hydraulic Domain . 5-5

viii Contents

Magnetic Domain . 5-7

Mechanical Rotational Domain . 5-8

Mechanical Translational Domain 5-9

Pneumatic Domain . 5-10

Thermal Domain . 5-12

Index

ix

x Contents

1

Simscape Language
Fundamentals

• “What Is the Simscape Language?” on page 1-2

• “Typical Tasks” on page 1-6

• “About Simscape Files” on page 1-8

• “Creating a New Physical Domain” on page 1-13

• “Creating Custom Components” on page 1-15

1 Simscape™ Language Fundamentals

What Is the Simscape Language?

In this section...

“Overview” on page 1-2

“Basic Example — Resistor” on page 1-2

Overview
The Simscape™ language extends the Simscape modeling environment by
enabling you to create new components that do not exist in the Foundation
library or in any of the add-on products. It is a dedicated textual language for
modeling physical systems and has the following characteristics:

• Based on the MATLAB® programming language

• Contains additional constructs specific to physical modeling

The Simscape language makes modeling physical systems easier and more
intuitive. It lets you define custom components as textual files, complete
with parameterization, physical connections, and equations represented as
acausal implicit differential algebraic equations (DAEs). The components you
create can reuse the physical domain definitions provided with Simscape to
ensure that your components are compatible with the standard Simscape
components. You can also add your own physical domains. You can
automatically build and manage block libraries of your Simscape components,
enabling you to share these models across your organization.

Basic Example — Resistor
Let us discuss how modeling in Simscape language works, using a linear
resistor as an example.

A linear resistor is a simple electrical component, described by the following
equation:

V I R=

where

1-2

What Is the Simscape™ Language?

V Voltage across the resistor

I Current through the resistor

R Resistance

A Simscape file that implements such a linear resistor might look as follows:

component my_resistor

% Linear Resistor

% The voltage-current (V-I) relationship for a linear resistor is V=I*R,

% where R is the constant resistance in ohms.

%

% The positive and negative terminals of the resistor are denoted by the

% + and - signs respectively.

nodes

p = foundation.electrical.electrical; % +:left

n = foundation.electrical.electrical; % -:right

end

variables

i = { 0, 'A' };

v = { 0, 'V' };

end

parameters

R = { 1, 'Ohm' }; % Resistance

end

function setup

across(v, p.v, n.v);

through(i, p.i, n.i);

if R <= 0

error('Resistance value must be greater than zero');

end

end

equations

v == i*R;

end

end

1-3

1 Simscape™ Language Fundamentals

Let us examine the structure of the Simscape file my_resistor.ssc.

The first line indicates that this is a component file, and the component name
is my_resistor.

Following this line, there are optional comments that customize the block
name and provide a short description in the block dialog box.

The next section of the Simscape file is the declaration section. For the linear
resistor, it declares:

• Two electrical nodes, p and n (for + and – terminals, respectively)

• Through and Across variables, current i and voltage v, to be connected to
the electrical domain at setup

• Parameter R, with a default value of 1 Ohm, specifying the resistance value.
This parameter appears in the dialog box of the block generated from
the component file, and can be modified when building and simulating a
model. The comment immediately following the parameter declaration,
Resistance, specifies how the name of the block parameter appears in
the dialog box.

The following section is setup. In this case, it serves the two purposes:

• Establishes relationships between the component variables and nodes (and
therefore domain variables) by using across and through functions.

• Performs parameter validation, by checking that the resistance value is
greater than zero.

The final section contains the equation v == i*R. It defines the mathematical
relationship between the component Through and Across variables, current
i and voltage v, and the parameter R. The == operand used in the equation
specifies continuous mathematical equality between the left- and right-hand
side expressions. This means that the equation does not represent assignment
but rather a symmetric mathematical relationship between the left- and
right-hand operands. This equation is evaluated continuously throughout the
simulation.

1-4

What Is the Simscape™ Language?

The following illustration shows the resulting custom block, generated from
this component file.

To learn more about writing Simscape files and converting your textual
components into libraries of additional Simscape blocks, refer to the following
table.

For... See...

Declaration semantics, rules, and
examples

“Declaring Domains and
Components” on page 2-2

Purpose and examples of the setup
section

“Defining Component Setup” on
page 2-15

Detailed information on writing
component equations

“Defining Component Equations” on
page 2-20

Annotating the component file
to improve the generated block
cosmetics and usability

“Customizing the Block Name and
Appearance” on page 3-10

Generating Simscape blocks from
component files

“How to Generate Custom Block
Libraries from Simscape Component
Files” on page 3-2

1-5

1 Simscape™ Language Fundamentals

Typical Tasks
Simscape block libraries contain a comprehensive selection of blocks that
represent engineering components such as valves, resistors, springs, and so
on. These prebuilt blocks, however, may not be sufficient to address your
particular engineering needs. When you need to extend the existing block
libraries, use the Simscape language to define customized components, or
even new physical domains, as textual files. Then convert your textual
components into libraries of additional Simscape blocks that you can use in
your model diagrams. For more information on the modeling interface, see
Chapter 3, “Simscape File Deployment”.

The following table lists typical tasks along with links to background
information and examples.

Task Background Information Examples

Create a custom component
model based on equations

“Creating Custom
Components” on page 1-15

“Declaring Domains and
Components” on page 2-2

“Defining Component Setup”
on page 2-15

“Defining Component
Equations” on page 2-20

“Example — Declaring a
Spring Component” on page
2-12

“Mechanical Component
Example — Spring” on page
2-43

“Electrical Component
Example — Ideal Capacitor”
on page 2-44

Add a custom block library to
Simscape libraries

“How to Generate Custom
Block Libraries from Simscape
Component Files” on page 3-2

“Using Source Protection for
Simscape Files” on page 3-3

“Customizing the Block Name
and Appearance” on page 3-10

“Example — Creating and
Customizing Block Libraries”
on page 3-8

“Example — Customized Block
Display” on page 3-19

1-6

Typical Tasks

Task Background Information Examples

Define a new domain, with
associated Through and Across
variables, and then use it in
custom components

“Creating a New Physical
Domain” on page 1-13

“Declaring Domains and
Components” on page 2-2

“Example — Declaring
a Mechanical Rotational
Domain” on page 2-12

“Propagation of Domain
Parameters” on page 2-49

Create a component that
supplies domain-wide
parameters (such as fluid
temperature) to the rest of the
model

“Working with Domain
Parameters” on page 2-49

“Source Components” on page
2-50

1-7

1 Simscape™ Language Fundamentals

About Simscape Files

In this section...

“Simscape File Type” on page 1-8

“Model Types” on page 1-8

“Basic File Structure” on page 1-9

Simscape File Type
The Simscape file is a dedicated file type in the MATLAB environment. It
has the extension .ssc.

The Simscape file contains language constructs that do not exist in MATLAB.
They are specific to modeling physical objects, as described in Chapter 2,
“Creating Custom Components and Domains”. However, the Simscape file
incorporates the basic MATLAB programming syntax at the lowest level.

Simscape files must reside in a +package directory on the MATLAB path:

• directory_on_the_path/+MyPackage/MyComponent.ssc

• directory_on_the_path/+MyPackage/+Subpackage/.../MyComponent.ssc

For more information on packaging your Simscape files, see “Organizing
Your Simscape Files” on page 3-3.

Model Types
There are two types of Simscape files, corresponding to the two model types:

• Domain models describe the physical domains through which component
models exchange energy and data. These physical domains correspond to
port types, for example, translational, rotational, hydraulic, and so on.

• Component models describe the physical components that you want to
model, that is, they correspond to Simscape blocks.

For example, to implement a variable hydraulic orifice that is different from
the one in the Simscape Foundation library, you can create a component

1-8

About Simscape™ Files

model, MyVarOrifice.ssc, based on the standard hydraulic domain included
in the Foundation library. However, to implement a thermohydraulic orifice,
you need to create a domain model first, thermohydraulic.ssc (a custom
hydraulic domain that accounts for fluid temperature), and then create
the component model that references it, MyThhOrifice.ssc, as well as all
the other component models based on this custom domain and needed for
modeling thermohydraulic systems.

Basic File Structure
Each model is defined in its own file of the same name with a .ssc extension.
For example, MyComponent is defined in MyComponent.ssc. A model may be a
domain model or a component model. Each Simscape file starts with a line
specifying the model class and identifier:

ModelClass Identifier

where

• ModelClass is either domain or component

• Identifier is the name of the model

For example:

domain rotational

or

component spring

The basic file structure for domain models and component models is similar.

1-9

1 Simscape™ Language Fundamentals

A Simscape file splits the model description into the following pieces:

• Interface or Declaration — Declarative section similar to the MATLAB
class system declarations:

- For domain models, declares variables (Across and Through) and
parameters

- For component models, declares nodes, inputs and outputs, parameters,
and variables

• Implementation (only for component models) — Describes run-time
functionality of the model. Implementation consists of two sections:

- Setup — Performs initialization and setup. Executed once for each
instance of the component in the top-level model during model
compilation.

- Equation — Describes underlying equations. Executed throughout
simulation.

For detailed information on each of these file sections, see Chapter 2,
“Creating Custom Components and Domains”.

Like the MATLAB class system, these constructs and functions act on a
specific instance of the class.

1-10

About Simscape™ Files

Unlike the MATLAB class system:

• The object is not passed as the first argument to function. This reduces
syntax with no loss of functionality.

• These functions have specific roles in the component lifecycle, as shown in
the following diagram.

Component Instance Lifecycle

1-11

1 Simscape™ Language Fundamentals

Phase Steps

Top-Level Model
Construction 1 Invokes file name fromMATLAB to construct component instance

2 Adds component instance to top-level model

3 Sets parameters on component instance

4 Connects component instance to other members of the top-level
model

Top-Level Model
Compilation 5 Calls the setup function once for each component instance in

the top-level model

Top-Level Model
Simulation 6 (Conceptually) calls the equations function for each component

instance in the top-level model repeatedly throughout the
simulation

1-12

Creating a New Physical Domain

Creating a New Physical Domain

In this section...

“When to Define a New Physical Domain” on page 1-13

“How to Define a New Physical Domain” on page 1-14

When to Define a New Physical Domain
A physical domain provides an environment, defined primarily by its Across
and Through variables, for connecting the components in a Physical Network.
Component nodes are typed by domain, that is, each component node is
associated with a unique type of domain and can be connected only to nodes
associated with the same domain.

You do not need to define a new physical domain to create custom components.
Simscape software comes with several predefined domains, such as
mechanical translational, mechanical rotational, electrical, hydraulic, and
so on. These domains are included in the Foundation library, and are the
basis of Simscape Foundation blocks, as well as those in Simscape add-on
products (for example, SimHydraulics® or SimElectronics® blocks). If you
want to create a custom component to be connected to the standard Simscape
blocks, use the Foundation domain definitions. For a complete listing of the
Foundation domains, see Chapter 5, “Simscape Foundation Domains”.

You need to define a new domain only if the Foundation domain definitions
do not satisfy your modeling requirements. For example, to enable
modeling electrochemical systems, you need to create a new domain with
the appropriate Across and Through variables. If you need to model a
thermohydraulic system, you can create a custom hydraulic domain that
accounts for fluid temperature by supplying a domain-wide parameter (for an
example, see “Propagation of Domain Parameters” on page 2-49).

Once you define a custom physical domain, you can use it for defining nodes
in your custom components. These nodes, however, can be connected only to
other nodes of the same domain type. For example, if you define a custom
hydraulic domain as described above and then use it when creating custom
components, you will not be able to connect these nodes with the regular

1-13

1 Simscape™ Language Fundamentals

hydraulic ports of the standard Simscape blocks, which use the Foundation
hydraulic domain definition.

How to Define a New Physical Domain
To define a new physical domain, you must declare the Through and Across
variables associated with it. For more information, see “Basic Principles of
Modeling Physical Networks” in the Simscape User’s Guide.

A domain file must begin with the domain keyword, followed by the domain
name, and be terminated by the end keyword.

Domain files contain only the declaration section. Two declaration blocks
are required:

• The Across variables declaration block, which begins with the variables
keyword and is terminated by the end keyword. It contains declarations
for all the Across variables associated with the domain. A domain model
class definition can contain multiple Across variables, combined in a single
variables block.

• The Through variables declaration block, which begins with the
variables(Balancing = true) keyword and is terminated by the end
keyword. It contains declarations for all the Through variables associated
with the domain. A domain model class definition can contain multiple
Through variables, combined in a single variables(Balancing = true)
block.

For more information on declaring the Through and Across variables, see
“Declaring Through and Across Variables for a Domain” on page 2-6.

The parameters declaration block is optional. If present, it must begin with
the parameters keyword and be terminated by the end keyword. This
block contains declarations for domain parameters. These parameters are
associated with the domain and can be propagated through the network to all
components connected to the domain. For more information, see “Working
with Domain Parameters” on page 2-49.

For an example of a domain file, see “Example — Declaring a Mechanical
Rotational Domain” on page 2-12.

1-14

Creating Custom Components

Creating Custom Components

In this section...

“Component Types and Prerequisites” on page 1-15

“How to Create a New Behavioral Model” on page 1-15

“Defining Domain-Wide Parameters” on page 1-16

“Adding a Custom Block Library” on page 1-17

Component Types and Prerequisites
In physical modeling, there are two types of models:

• Behavioral — A model that is implemented based on its physical behavior,
described by a system of mathematical equations. An example of a
behavioral block implementation is the Variable Orifice block.

• Structural — A model that is constructed out of other blocks, connected
in a certain way. An example of a structional block implementation is
the 4-Way Directional Valve block (available with SimHydraulics block
libraries), which is constructed based on four Variable Orifice blocks.

Simscape language lets you create new behavioral models when your design
requirements are not satisfied by the libraries of standard blocks provided
with Simscape and its add-on products.

You can then use these custom behavioral models either as standalone blocks
or as building blocks for structural models. To create a new structural model,
use masked subsystems. For more information, see “Creating Subsystems” in
the Simulink® User’s Guide.

A prerequisite to creating components is having the appropriate domains for
the component nodes. You can use Simscape Foundation domains or create
your own, as described in “Creating a New Physical Domain” on page 1-13.

How to Create a New Behavioral Model
To create a new behavioral model, define a component model class by writing
a component file.

1-15

1 Simscape™ Language Fundamentals

A component file must begin with the component keyword, followed by the
component name, and be terminated by the end keyword.

Component files typically contain three sections:

• Declaration — Contains all the member class declarations for the
component, such as parameters, variables, nodes, inputs, and outputs.
Each member class declaration is a separate declaration block, which
begins with the appropriate keyword (corresponding to the member class)
and is terminated by the end keyword. For more information, see the
component-related sections in “Declaring Domains and Components” on
page 2-2.

• Setup — Prepares the component for simulation. The body of the setup
function can contain assignment statements, if and error statements, and
across and through functions. The setup function is executed once for
each component instance during model compilation. It takes no arguments
and returns no arguments. For more information, see “Defining Component
Setup” on page 2-15.

• Equation — Declares the component equations. These equations may
be conditional, and are applied throughout the simulation. For more
information, see “Defining Component Equations” on page 2-20.

Defining Domain-Wide Parameters
Another type of a custom block is an environment block that acts as a source
of domain-wide parameters. For example, you can create a Hydraulic
Temperature block that supplies the temperature parameter to the rest
of the model.

Note The Foundation hydraulic domain does not contain a temperature
parameter. You would have to create a customized hydraulic domain where
this parameter is declared. Components using your own customized hydraulic
domain cannot be connected with the components using the Simscape
Foundation hydraulic domain. Use your own customized domain definitions
to build complete libraries of components to be connected to each other.

1-16

Creating Custom Components

You create environment components similar to behavioral components,
by writing a component file that consists of the declaration, setup, and
equation sections. However, to indicate that this component supplies the
parameter value to the rest of the model, set the Propagation attribute of
this component to source. For more information, see “Working with Domain
Parameters” on page 2-49 and “Attribute Lists” on page 2-58.

Adding a Custom Block Library
Adding a custom block library involves creating new components (behavioral
or environment). It may involve creating a new physical domain if the
Simscape Foundation domain definitions do not satisfy your modeling
requirements.

After you have created the textual component files, convert them into a
library of blocks using the procedure described in “How to Generate Custom
Block Libraries from Simscape Component Files” on page 3-2. You can
control the block names and appearance by using optional comments in the
component file. For more information, see “Customizing the Block Name and
Appearance” on page 3-10.

1-17

1 Simscape™ Language Fundamentals

1-18

2

Creating Custom
Components and Domains

• “Declaring Domains and Components” on page 2-2

• “Defining Component Setup” on page 2-15

• “Defining Component Equations” on page 2-20

• “Putting It Together — Complete Component Examples” on page 2-43

• “Working with Domain Parameters” on page 2-49

• “Attribute Lists” on page 2-58

• “Subclassing and Inheritance” on page 2-60

2 Creating Custom Components and Domains

Declaring Domains and Components

In this section...

“Declaration Section Purpose” on page 2-2

“Definitions” on page 2-3

“Member Declarations” on page 2-3

“Member Summary” on page 2-4

“Declaring a Member as a Value with Unit” on page 2-5

“Declaring Through and Across Variables for a Domain” on page 2-6

“Declaring Component Variables” on page 2-7

“Declaring Component Parameters” on page 2-7

“Declaring Domain Parameters” on page 2-10

“Declaring Component Nodes” on page 2-10

“Declaring Component Inputs and Outputs” on page 2-11

“Example — Declaring a Mechanical Rotational Domain” on page 2-12

“Example — Declaring a Spring Component” on page 2-12

Declaration Section Purpose

Both domain and component files contain a declaration section:

2-2

Declaring Domains and Components

• The declaration section of a domain file is where you define the Through
and Across variables for the domain. You can also define the domain-wide
parameters, if needed.

• The declaration section of a component file is where you define all the
variables, parameters, nodes, inputs, and outputs that you need to describe
the connections and behavior of the component. These are called member
declarations.

In order to use a variable, parameter, and so on, in the setup and equation
sections of a component file, you have to first define it in the declaration
section.

Definitions
The declaration section of a Simscape file may contain one or more member
declarations.

Term Definition

Member • A member is a piece of a model’s declaration. The collection of
all members of a model is its declaration.

• It has an associated data type and identifier.

• Each member is associated with a unique member class.
Additionally, members may have some specific attributes.

Member class • A member class is the broader classification of a member.

• The following is the set of member classes: variables (domain or
component variables), parameters, inputs, outputs, nodes.

• Two members may have the same type, but be of different
member classes. For example, a parameter and an input may
have the same data type, but because they are of different
member classes, they behave differently.

Member Declarations
The following rules apply to declaring members:

• Like the MATLAB class system, declared members appear in a declaration
block:

2-3

2 Creating Custom Components and Domains

<ModelClass> <Identifier>
<MemberClass>

% members here
end
...

end

• Unlike the MATLAB class system, <MemberClass> may take on any of the
available member classes and dictates the member class of the members
defined within the block.

• Like the MATLAB class system, each declared member is associated with
a MATLAB identifier, <Identifier>. Unlike the MATLAB class system,
members must be declared with a right-hand side value.

<ModelClass> <Identifier>
<MemberClass>

<Identifier> = <Expression>;
% more members

end
...

end

• <Expression> on the right-hand side of the equal sign (=) is a MATLAB
expression. It could be a constant expression, or a call to a MATLAB
function.

• The MATLAB class of the expression is restricted by the class of the
member being declared. Also, the data type of the expression dictates data
type of the declared member.

Member Summary
The following table provides the summary of member classes.

2-4

Declaring Domains and Components

Member
Class

Applicable
Model Classes

MATLAB Class of
Expression

Expression
Meaning

Writable

parameters domain
component

Numerical value with
unit

Default value Yes

variables domain
component

Double value with unit Nominal value
and default initial
condition

Yes

inputs component Scalar double value
with unit

Default value No

outputs component Scalar double value
with unit

Default value No

nodes component Instance of a node
associated with a
domain

Type of domain No

Note When a member is writable, it means that it can be assigned to in
the setup function. Nodes are themselves not writable, but their writable
members (parameters and variables) are.

Declaring a Member as a Value with Unit
In Simscape language, declaration members such as parameters, variables,
inputs, and outputs, are represented as a value with associated unit. The
syntax for a value with unit is essentially that of a two-member value-unit
cell array:

{ value , 'unit' }

where value is a real matrix, including a scalar, and unit is a valid unit
string, defined in the unit registry, or 1 (unitless). Depending on the member
type, certain restrictions may apply. See respective reference pages for details.

For example, this is how you declare a parameter as a value with unit:

par1 = { value , 'unit' };

2-5

2 Creating Custom Components and Domains

As in MATLAB, the comma is not required, and this syntax is equivalent:

par1 = { value 'unit' };

To declare a unitless parameter, you can either use the same syntax:

par1 = { value , '1' };

or omit the unit and use this syntax:

par1 = value;

Internally, however, this parameter will be treated as a two-member
value-unit cell array { value , '1' }.

Declaring Through and Across Variables for a
Domain
In a domain file, you have to declare the Through and Across variables
associated with the domain. These variables characterize the energy flow and
usually come in pairs, one Through and one Across. Simscape language does
not require that you have the same number of Through and Across variables
in a domain definition, but it is highly recommended. For more information,
see “Basic Principles of Modeling Physical Networks” in the Simscape User’s
Guide.

variables begins an Across variables declaration block, which is terminated
by an end key word. This block contains declarations for all the Across
variables associated with the domain. A domain model class definition can
contain multiple Across variables, combined in a single variables block.
This block is required.

Through variables are semantically distinct in that their values have to
balance at a node: for each Through variable, the sum of all its values flowing
into a branch point equals the sum of all its values flowing out. Therefore,
a domain file must contain a separate declaration block for its Through
variables, with the Balancing attribute set to true,

variables(Balancing = true) begins a Through variables definition block,
which is terminated by an end key word. This block contains declarations
for all the Through variables associated with the domain. A domain model

2-6

Declaring Domains and Components

class definition can contain multiple Through variables, combined in a single
variables(Balancing = true) block. This block is required.

Each variable is defined as a value with unit:

domain_var1 = { value , 'unit' };

value is the initial value. unit is a valid unit string, defined in the unit
registry. See “Example — Declaring a Mechanical Rotational Domain” on
page 2-12 for more information.

Declaring Component Variables
When you declare Through and Across variables in a component, you are
essentially creating instances of domain Through and Across variables. You
declare a component variable as a value with unit by specifying an initial
value and units commensurate with units of the domain variable.

The following example initializes the Through variable t (torque) as 0 N*m:

variables
t = { 0, 'N*m' };

end

Note After you declare component variables, you have to use through and
across functions in the setup section to specify their relationship with
component nodes.

You can also declare an internal component variable as a value with unit. You
can use such internal variables in the setup and equation sections. Unlike
component parameters, internal component variables do not appear in a block
dialog box of the Simscape block generated from the component file.

Declaring Component Parameters
Component parameters let you specify adjustable parameters for the Simscape
block generated from the component file. Parameters will appear in the block
dialog box and can be modified when building and simulating a model.

2-7

2 Creating Custom Components and Domains

You declare each parameter as a value with unit. Specifying an optional
comment lets you control the parameter name in the block dialog box. For
more information, see “How to Specify Meaningful Names for the Block
Parameters” on page 3-14.

The following example declares parameter k, with a default value of 10
N*m/rad, specifying the spring rate of a rotational spring. In the block dialog
box, this parameter will be named Spring rate.

parameters
k = { 10, 'N*m/rad' }; % Spring rate

end

Specifying Parameter Units
When you declare a component parameter, use the units that make sense in
the context of the block application. For example, if you model a solenoid, it is
more convenient for the block user to input stroke in millimeters rather than
in meters. When a parameter is used in the setup and equation sections,
Simscape unit manager handles the conversions.

With temperature units, however, there is an additional issue of whether
to apply linear or affine conversion (see “Thermal Unit Conversions” in the
Simscape User’s Guide). Therefore, when you declare a parameter with
temperature units, you can specify only nonaffine units (kelvin or rankine).
When the block user enters the parameter value in affine units (Celsius or
Fahrenheit), this value is automatically converted to the units specified in
the parameter declaration. By default, affine conversion is applied. If a
parameter specifies relative, rather than absolute, temperature (in other
words, a change in temperature), set its Conversion attribute to relative
(for details, see “Member Attributes” on page 2-59).

Note Member attributes apply to a whole DeclarationBlock. If some of your
parameters are relative and others are absolute, declare them in separate
blocks. You can have more than one declaration block of the same member
type within a Simscape file.

2-8

Declaring Domains and Components

Case Sensitivity
Simscape language is case-sensitive. This means that member names
may differ only by case. However, Simulink software is not case-sensitive.
Simulink parameter names (that is, parameter names in a block dialog box)
must be unique irrespective of case. Therefore, if you declare two parameters
whose names differ only by case, such as

component MyComponent
parameters

A = 0;
a = 0;

end
end

you will not be able to generate a block from this component.

However, if one of the parameters is private or hidden, that is, does not
appear in the block dialog box,

component MyComponent
parameters(Access=private)

A = 0;
end
parameters

a = 0;
end

end

or if one is declared as a parameter and another as a variable, such as

component MyComponent
variables

A = 0;
end
parameters

a = 0;
end

end

2-9

2 Creating Custom Components and Domains

then there is no conflict in the Simulink namespace and no problem
generating the block from the component source.

The case-sensitivity restriction applies only to component parameters,
because other member types do not have an associated Simulink parameter,
and are therefore completely case-sensitive.

Declaring Domain Parameters
Similar to a component parameter, you declare each domain parameter as a
value with unit. However, unlike component parameters, the main purpose of
domain parameters is to propagate the same parameter value to all or some of
the components connected to the domain. For more information, see “Working
with Domain Parameters” on page 2-49.

Declaring Component Nodes
Component nodes define the conserving ports of a Simscape block generated
from the component file. The type of the conserving port (electrical,
mechanical rotational, and so on) is determined by the type of its parent
domain. The domain defines which Through and Across variables the port can
transfer. Conserving ports of Simscape blocks can be connected only to ports
associated with the same domain. For more information, see “Basic Principles
of Modeling Physical Networks” in the Simscape User’s Guide.

When declaring nodes in a component, you have to associate them with an
existing domain. You need to refer to the domain name using the full path
starting with the top package directory. For more information on packaging
your Simscape files, see “How to Generate Custom Block Libraries from
Simscape Component Files” on page 3-2.

The following example uses the syntax for the Simscape Foundation
mechanical rotational domain:

nodes
r = foundation.mechanical.rotational.rotational;

end

2-10

Declaring Domains and Components

The name of the top-level package directory is +foundation. It contains a
subpackage +mechanical, with a subpackage +rotational, which in turn
contains the domain file rotational.ssc.

If you want to use your own customized rotational domain called
rotational.ssc and located at the top level of your custom package directory
+MechanicalElements, the syntax would be:

nodes
r = MechanicalElements.rotational;

end

Note Components using your own customized rotational domain cannot be
connected with the components using the Simscape Foundation mechanical
rotational domain. Use your own customized domain definitions to build
complete libraries of components to be connected to each other.

Specifying an optional comment lets you control the port label and location
in the block icon. For more information, see “How to Customize the Names
and Locations of the Block Ports” on page 3-15. In the following example, the
electrical conserving port will be labelled + and will be located on the top
side of the block icon.

nodes
p = foundation.electrical.electrical; % +:top

end

Declaring Component Inputs and Outputs
In addition to conserving ports, Simscape blocks can contain Physical Signal
input and output ports, directional ports that carry signals with associated
units. These ports are defined in the inputs and outputs declaration blocks
of a component file. Each input or output is defined as a value with unit.

Specifying an optional comment lets you control the port label and location in
the block icon. For more information, see “How to Customize the Names and
Locations of the Block Ports” on page 3-15.

2-11

2 Creating Custom Components and Domains

The following example declares an input port s, with a default value of 1
Pa, specifying the control port of a hydraulic pressure source. In the block
diagram, this port will be named Pressure and will be located on the top
side of the block icon.

inputs
s = { 1, 'Pa' }; % Pressure:top

end

Example — Declaring a Mechanical Rotational
Domain
The following file, named rotational.ssc, declares a mechanical rotational
domain, with angular velocity as an Across variable and torque as a Through
variable.

domain rotational
% Define the mechanical rotational domain
% in terms of across and through variables

variables
w = { 1 , 'rad/s' }; % angular velocity

end

variables(Balancing = true)
t = { 1 , 'N*m' }; % torque

end

end

Note This domain declaration corresponds to the Simscape Foundation
mechanical rotational domain. For a complete listing of the Foundation
domains, see Chapter 5, “Simscape Foundation Domains”.

Example — Declaring a Spring Component
The following diagram shows a network representation of a
mass-spring-damper system, consisting of four components (mass, spring,
damper, and reference) in a mechanical rotational domain.

2-12

Declaring Domains and Components

The domain is declared in a file named rotational.ssc (see “Example —
Declaring a Mechanical Rotational Domain” on page 2-12). The following
file, named spring.ssc, declares a component called spring. The component
contains:

• Two rotational nodes, r and c (for rod and case, respectively)

• Parameter k, with a default value of 10 N*m/rad, specifying the spring rate

• Through and Across variables, torque t and angular velocity w, later to be
related to the Through and Across variables of the rotational domain

• Internal variable theta, with a default value of 0 rad, specifying relative
angle, that is, deformation of the spring

component spring

nodes

r = foundation.mechanical.rotational.rotational;

c = foundation.mechanical.rotational.rotational;

end

parameters

k = { 10, 'N*m/rad' }; % spring rate

end

variables

theta = { 0, 'rad' }; % introduce new variable for spring deformation

t = { 0, 'N*m' }; % torque through

2-13

2 Creating Custom Components and Domains

w = { 0, 'rad/s' }; % velocity across

end

% setup here

% equations here

end

Note This example shows only the declaration section of the spring
component. For a complete file listing of a spring component, including the
setup and equations, see “Mechanical Component Example — Spring” on
page 2-43.

2-14

Defining Component Setup

Defining Component Setup

In this section...

“Setup Section Purpose” on page 2-15

“Validating Parameters” on page 2-17

“Computing Derived Parameters” on page 2-17

“Setting Initial Conditions” on page 2-18

“Defining Relationship Between Component Variables and Nodes” on page
2-19

Setup Section Purpose

The setup section of a Simscape file follows the declaration section and
consists of the function named setup. The setup function is executed once for
each component instance during model compilation. It takes no arguments
and returns no arguments.

Note Setup is not a constructor; it prepares the component for simulation.

Use the setup function for the following purposes:

• Validating parameters

2-15

2 Creating Custom Components and Domains

• Computing derived parameters

• Setting initial conditions

• Relating variables and nodes to one another by using across and through
functions

The following rules apply:

• The setup function is executed as regular MATLAB code.

• All members declared in the component are available by their name, for
example:

component MyComponent
parameters

p = {1, 'm' };
end
[...]
function setup

disp(p); % during compilation, prints value of p
% for each instance of MyComponent in the model

[...]
end

• All members (such as variables, parameters) that are externally writable
are writable within setup. See “Member Summary” on page 2-4 for more
information.

• Local MATLAB variables may be introduced in the setup function. They
are scoped only to the setup function.

The following restrictions apply:

• Command syntax is not supported in the setup function. You must use
the function syntax. For more information, see “Command vs. Function
Syntax” in the MATLAB Programming Fundamentals documentation.

• Persistent and global variables are not supported. For more information,
see “Types of Variables” in the MATLAB Programming Fundamentals
documentation.

• MATLAB system commands using the ! operator are not supported.

2-16

Defining Component Setup

• try-end and try-catch-end constructs are not supported.

• Passing declaration members to external MATLAB functions,
for example, my_function(param1), is not supported. You can,
however, pass member values to external functions, for example,
my_function(param1.value('unit')).

Validating Parameters
The setup function validates parameters using simple if statements and the
error function. For example:

component MyComponent

parameters

LowerThreshold = {1, 'm' };

UpperThreshold = {1, 'm' };

end

[...]

function setup

if LowerThreshold > UpperThreshold

error('LowerThreshold is greater than UpperThreshold');

end

end

[...]

end

Computing Derived Parameters
The setup function can override parameters by assigning to them. For
example, it can verify that a parameter is not greater than the maximum
allowed value, and if it is, issue a warning and assign the maximum allowed
value to the parameter:

component MyComponent

parameters

MyParam = {1, 'm' };

end

[...]

function setup

MaxValue = {1, 'm' };

if MyParam > MaxValue

warning('MyParam is greater than MaxValue, overriding with MaxValue');

2-17

2 Creating Custom Components and Domains

MyParam = MaxValue;

end

end

[...]

end

Note Members are strongly typed. In the example above, MaxValue must
have the same data type and compatible unit as MyParam. Otherwise, you
will get an error.

Setting Initial Conditions
As you declare variables, values that you assign to them are their initial
conditions. However, you can use the setup function to override these initial
conditions by assigning the variable a new value, for example:

component MyComponent

variables

Speed = { 10, 'm/s' };

end

[...]

parameters

InCollision = 0; % Specifies whether bodies are in collision

end

[...]

function setup

if InCollision > 0

Speed = { 0, 'm/s' }; % Speed(t = 0) = 0 because bodies are in collision

end

end

[...]

end

Note Variables are also strongly typed. The initial value you assign to the
variable must have the same data type and compatible unit as the variable.
Otherwise, you will get an error.

2-18

Defining Component Setup

Defining Relationship Between Component Variables
and Nodes
Use the across and through functions to establish relationship between the
component variables and nodes. The across function is not strictly necessary
because the same relationship for the Across variables could be established in
the equation section, but it acts as shorthand and adds notation that clearly
illustrates the relationship among the variables. The through function is the
only way to establish relationship between the Through variables. These
functions are especially helpful when the component has multiple nodes
because they clearly indicate branches.

In the following example, r and c are rotational nodes, while t and w are
component variables for torque and angular velocity, respectively. The setup
section defines the relationship between the variables and nodes:

component spring

nodes

r = foundation.mechanical.rotational.rotational;

c = foundation.mechanical.rotational.rotational;

end

[...]

variables

[...]

t = { 0, 'N*m' }; % torque through

w = { 0, 'rad/s' }; % velocity across

end

function setup

through(t, r.t, c.t); % t a through variable from r to c

across(w, r.w, c.w); % w an across variable from r to c

[...]

end

% equations here

end

2-19

2 Creating Custom Components and Domains

Defining Component Equations

In this section...

“Equation Section Purpose” on page 2-20

“Examples of Equations” on page 2-21

“Specifying Mathematical Equality” on page 2-22

“Use of Relational Operators in Equations” on page 2-23

“Equation Dimensionality” on page 2-25

“Equation Continuity” on page 2-26

“Using Conditional Expressions in Equations” on page 2-27

“Using Intermediate Terms in Equations” on page 2-29

“Programming Run-Time Errors and Warnings” on page 2-39

“Working with Physical Units in Equations” on page 2-41

Equation Section Purpose

The equation section of a Simscape file follows the declaration and setup
sections. It is executed throughout the simulation. The purpose of the
equation section is to establish the mathematical relationships among a
component’s variables, parameters, inputs, outputs, time and the time
derivatives of each of these entities.

2-20

Defining Component Equations

A Simscape language equation consists of two expressions connected with the
== operator. Unlike the regular assignment operator (=), the == operator
specifies continuous mathematical equality between the two expressions (for
more information, see “Specifying Mathematical Equality” on page 2-22). The
equation expressions may be constructed from any of the identifiers defined in
the model declaration. You can also access global simulation time from the
equation section using the time function.

Examples of Equations

• “Simple Algebraic System” on page 2-21

• “Using Simulation Time in Equations” on page 2-21

Simple Algebraic System
This example shows implementation for a simple algebraic system:

y = x2

x = 2y + 1

The Simscape file looks as follows:

component MyAlgebraicSystem
variables

x = 0;
y = 0;

end
equations

y == x^2; % y = x^2
x == 2 * y + 1; % x = 2 * y + 1

end
end

Using Simulation Time in Equations
You can access global simulation time from the equation section using the
time function. time returns the simulation time in seconds.

2-21

2 Creating Custom Components and Domains

The following example illustrates y = sin (ωt), where t is simulation time:

component
parameters

w = { 1, `1/s' } % omega
end
outputs

y = 0;
end
equations

y == sin(w * time);
end

end

Specifying Mathematical Equality
Simscape language stipulates semantically that all the equation expressions
returned by the equation section of a Simscape file specify continuous
mathematical equality between two expressions. Consider a simple example:

equations
Expression1 == Expression2;

end

Here we have declared an equality between Expression1 and Expression2.
The left- and right-hand side expressions are any valid MATLAB expressions
(see the next section for restrictions on using the relational operators: ==, <, >,
<=, >=, ~=, &&, ||). The equation expressions may be constructed from any of
the identifiers defined in the model declaration.

The equation is defined with the == operator. This means that the equation
does not represent assignment but rather a symmetric mathematical
relationship between the left- and right-hand operands. Because == is
symmetric, the left-hand operand is not restricted to just a variable. For
example:

component MyComponent
[...]
variables

a = 1;
b = 1;

2-22

Defining Component Equations

c = 1;
end
equations

a + b == c;
end

end

The following example is mathematically equivalent to the previous example:

component MyComponent
[...]
variables

a = 1;
b = 1;
c = 1;

end
equations

0 == c - a - b;
end

end

Note Equation expressions must be terminated with a semicolon or a newline.
Unlike MATLAB, the absence of a semicolon makes no difference. In any case,
Simscape language does not display the result as it evaluates the equation.

Use of Relational Operators in Equations
In the previous section we discussed how == is used to declare mathematical
equalities. In MATLAB, however, == yields an expression like any other
operator. For example:

(a == b) * c;

where a, b, and c represent scalar double values, is a legal MATLAB
expression. This would mean, take the logical value generated by testing a’s
equivalence to b, coerce this value to a double and multiply by c. If a is the
same as b, then this expression will return c. Otherwise, it will return 0.

On the other hand, in MATLAB we can use == twice to build an expression:

2-23

2 Creating Custom Components and Domains

a == b == c;

This expression is ambiguous, but MATLAB makes == and other relational
operators left associative, so this expression is treated as:

(a == b) == c;

The subtle difference between (a == b) == c and a == (b == c) can be
significant in MATLAB, but is even more significant in an equation. Because
the use of == is significant in the Simscape language, and to avoid ambiguity,
the following syntax:

component MyComponent
[...]
equations

a == b == c;
end

end

is illegal in the Simscape language. You must explicitly associate top-level
occurrences of relational operators. Either

component MyComponent
[...]
equations

(a == b) == c;
end

end

or

component MyComponent
[...]
equations

a == (b == c);
end

end

are legal. In either case, the quantity in the parentheses is equated to the
quantity on the other side of the equation.

2-24

Defining Component Equations

With the exception of the top-level use of the == operator, == and other
relational operators are left associative. For example:

component MyComponent
[...]
parameters

a = 1;
b = 1;
c = false;

end
variables

d = 1;
end
equations

(a == b == c) == d;
end

end

is legal and interpreted as:

component MyComponent
[...]
parameters

a = 1;
b = 1;
c = false;

end
variables

d = 1;
end
equations

((a == b) == c) == d;
end

end

Equation Dimensionality
The expressions on either side of the == operator need not be scalar
expressions. They must be either the same size or one must be scalar. For
example:

2-25

2 Creating Custom Components and Domains

equations
[...]
<3x3 Expression> == <3x3 Expression>;
[...]

end

is legal and introduces 9 scalar equations. The equation expression:

equations
[...]
<1x1 Expression> == <3x3 Expression>;
[...]

end

is also legal. Here, the left-hand side of the equation is expanded, via scalar
expansion, into the same expression replicated into a 3x3 matrix. This
equation expression also introduces 9 scalar equations.

However, the equation expression:

equations
[...]
<2x3 Expression> == <3x2 Expression>;
[...]

end

is illegal because the sizes of the expressions on the left- and right-hand side
are different.

Equation Continuity
The equation section is evaluated in continuous time. Some of the values that
are accessible in the equation section are themselves piecewise continuous,
that is, they change continuously in time. These values are:

• variables

• inputs

• outputs

• time

2-26

Defining Component Equations

Piecewise continuous indicates that values are continuous over compact time
intervals but may change value at certain instances. The following values
are continuous, but not time-varying:

• parameters

• constants

Time-varying countable values, for example, integer or logical, are never
continuous.

Continuity is propagated like a data type. It is propagated through continuous
functions (see).

Using Conditional Expressions in Equations
You can specify conditional equations by using if statements.

equations
[...]
if Expression

[...]
elseif Expression

[...]
else

[...]
end
[...]

end

Each [...] section may contain one or more equation expressions.

You can nest if statements, for example:

equations
[...]
if Expression

[...]
if Expression

[...]
else

2-27

2 Creating Custom Components and Domains

[...]
end

else
[...]

end
[...]

end

Restrictions

• Every if requires an else.

• The total number of equation expressions, their dimensionality, and their
order must be the same for every branch of the if-elseif-else statement.
However, this rule does not apply to the assert expressions, because they
are not included in the expression count for the branch.

• Every branch of the if-elseif-else statement must define the same
variable in terms of others. For example, you can design a hydraulic orifice
with if-else branches for turbulent and laminar flow, where each branch
defines flow rate in terms of pressure. However, a conditional expression
similar to the following

if x > 0
i == 0;

else
v == 0;

end

is forbidden.

Example
For a component where x and y are declared as 1x1 variables, specify the
following piecewise equation:

y
x x

x
=

− <= <=⎧
⎨
⎪

⎩⎪

for

otherwise

1 1
2

2-28

Defining Component Equations

This equation, written in the Simscape language, would look like:

equations
if x >= -1 && x <= 1

y == x;
else

y == x^2;
end

end

Another way to write this equation in the Simscape language is:

equations
y == if x>=-1 && x<=1, x else x^2 end

end

Using Intermediate Terms in Equations

• “Why Use Intermediate Terms?” on page 2-29

• “Syntax Rules” on page 2-31

• “Nested let Expressions” on page 2-34

• “Conditional let Expressions” on page 2-36

• “Identifier List in the Declarative Clause” on page 2-38

Why Use Intermediate Terms?
Textbooks often define certain equation terms in separate equations, and
then substitute these intermediate equations into the main one. For example,
for fully developed flow in ducts, the Darcy friction factor can be used to
compute pressure loss:

P
f L V

D
= ρ 2

2

where P is pressure, f is the Darcy friction factor, L is length, ρ is density, V is
flow velocity, and D is hydraulic area.

These terms are further defined by:

2-29

2 Creating Custom Components and Domains

f = 0 316
1 4

.

Re

Re = D V
ν

D
A= 4

π

V
q
A

=

where Re is the Reynolds number, A is the area, q is volumetric flow rate, and
ν is the kinematic viscosity.

In Simscape language, you can define intermediate terms and use them in
one or more equations by using the let expressions. The following example
shows the same equations written out in Simscape language:

component MyComponent
[...]
parameters

L = { 1, 'm' }; % length
rho = { 1e3, 'kg/m^3' }; % density
nu = { 1e-6, 'm^2/s' }; % kinematic viscosity

end
variables

p = { 0, 'Pa' }; % pressure
q = { 0, 'm^3/s' }; % volumetric flow rate
A = { 0, 'm^2' }; % area

end
equations

let
f = 0.316 / Re_d^0.25; % Darcy friction factor
Re_d = D_h * V / nu; % Reynolds number
D_h = sqrt(4.0 * A / pi); % hydraulic area
V = q / A; % flow velocity

in
p == f * L * rho * V^2 / (2 * D_h); % final equation

2-30

Defining Component Equations

end
end

end

After substitution of all intermediate terms, the final equation becomes:

p==0.316/(sqrt(4.0 * A / pi) * q / A / nu)^0.25 * L * rho * (q / A)^2 / (2 * sqrt(4.0 * A / pi));

Syntax Rules
A let expression consists of two clauses, the declaration clause and the
expression clause.

equations
[...]
let

declaration clause
in

expression clause
end
[...]

end

The declaration clause assigns an identifier, or set of identifiers, on the
left-hand side of the equal sign (=) to an equation expression on the right-hand
side of the equal sign:

LetValue = EquationExpression

The expression clause defines the scope of the substitution. It starts with
the keyword in, and may contain one or more equation expressions. All
the expressions assigned to the identifiers in the declaration clause are
substituted into the equations in the expression clause during parsing.

Note The end keyword is required at the end of a let-in-end statement.

Here is a simple example:

2-31

2 Creating Custom Components and Domains

component MyComponent
[...]
variables

x = 0;
y = 0;

end
equations

let
z = y + 1;

in
x == z;

end
end

end

In this example, the declaration clause of the let expression sets the value of
the identifier z to be the expression y + 1. Thus, substituting y + 1 for z in the
expression clause in the let statement, the code above is equivalent to:

component MyComponent
[...]
variables

x = 0;
y = 0;

end
equations

x == y + 1;
end
end

end

There may be multiple declarations in the declaration clause. These
declarations are order independent. The identifiers declared in one
declaration may be referred to by the expressions for identifiers in other
declarations in the same declaration clause. Thus, in the code example shown
in the previous section, the identifier Re_d (Reynolds number) is used in
the expression declaring the identifier f (Darcy friction factor). The only
requirement is that the expression references are acyclic.

2-32

Defining Component Equations

The expression clause of a let expression defines the scope of the substitution
for the declaration clause. Other equations, that do not require these
substitutions, may appear in the equation section outside of the expression
clause. In the following example, the equation section contains the equation
expression c == b + 2 outside the scope of the let expression before it.

component MyComponent
[...]
variables

a = 0;
b = 0;
c = 0;

end
equations

let
x = a + 1;

in
b == x;

end
c == b + 2;

end
end

These expressions are treated as peers. They are order independent, so this
example is equivalent to

component MyComponent
[...]
variables

a = 0;
b = 0;
c = 0;

end
equations

c == b + 2;
let

x = a + 1;
in

b == x;
end

2-33

2 Creating Custom Components and Domains

end
end

and, after the substitution, to

component MyComponent
[...]
variables

a = 0;
b = 0;
c = 0;

end
equations

b == a + 1;
c == b + 2;

end
end

Nested let Expressions
You can nest let expressions, for example:

component MyComponent
[...]
variables

a = 0;
b = 0;
c = 0;

end
equations

let
w = a + 1;

in
let

z = w + 1;
in

b == z;
c == w;

end
end

2-34

Defining Component Equations

end
end

In case of nesting, substitutions are performed based on both of the
declaration clauses. After the substitutions, the code above becomes:

component MyComponent
[...]
variables

a = 0;
b = 0;
c = 0;

end
equations

b == a + 1 + 1;
c == a + 1;

end
end

The innermost declarations take precedence. The following example
illustrates a nested let expression where the inner declaration clause
overrides the value declared in the outer one:

component MyComponent
[...]
variables

a = 0;
b = 0;

end
equations

let
w = a + 1;

in
let

w = a + 2;
in

b == w;
end

end
end

2-35

2 Creating Custom Components and Domains

end

Performing substitution on this example yields:

component MyComponent
[...]
variables

a = 0;
b = 0;

end
equations

b == a + 2;
end

end

Conditional let Expressions
You can use if statements within both declarative and expression clause of
let expressions, for example:

component MyComponent
[...]
variables

a = 0;
b = 0;
c = 0;

end
equations

let
x = if a < 0, a else b end;

in
c == x;

end
end

end

Here x is declared as the conditional expression based on a < 0. Performing
substitution on this example yields:

component MyComponent

2-36

Defining Component Equations

[...]
variables

a = 0;
b = 0;
c = 0;

end
equations

c == if a < 0, a else b end;
end

end

The next example illustrates how you can use let expressions within
conditional expressions. The two let expressions on either side of the
conditional expression are independent:

component MyComponent
[...]
variables

a = 0;
b = 0;
c = 0;

end
equations

if a < 0
let

z = b + 1;
in

c == z;
end

else
let

z = b + 2;
in

c == z;
end

end
end

end

This code is equivalent to:

2-37

2 Creating Custom Components and Domains

component MyComponent
[...]
variables

a = 0;
b = 0;
c = 0;

end
equations

if a < 0
c == b + 1;

else
c == b + 2;

end
end

end

Identifier List in the Declarative Clause
This example shows using an identifier list, rather that a single identifier, in
the declarative clause of a let expression:

component MyComponent
[...]
variables

a = 0;
b = 0;
c = 0;
d = 0;

end
equations

let
[x, y] = if a < 0, a; -a else -b; b end;

in
c == x;
d == y;

end
end

end

2-38

Defining Component Equations

Here x and y are declared as the conditional expression based on a < 0.
Notice that each side of the if statement defines a list of two expressions. A
first semantic translation of this example separates the if statement into

if a < 0, a; -a else -b; b end =>

{ if a < 0, a else -b end; if a < 0, -a else b end }

then the second semantic translation becomes

[x, y] = { if a < 0, a else -b end; if a < 0, -a else b end } =>

x = if a < 0, a else -b end; y = if a < 0, -a else b end;

and the final substitution on this example yields:

component MyComponent
[...]
variables

a = 0;
b = 0;
c = 0;
d = 0;

end
equations

c == if a < 0, a else -b end;
d == if a < 0, -a else b end;

end
end

Programming Run-Time Errors and Warnings
Use the assert construct to implement run-time error and warning messages
for a custom block. In the component file, you specify the condition to
be evaluated, as well as the error message to be output if this condition
is violated. When the custom block based on this component file is used
in a model, it will output this message if the condition is violated during
simulation. The Warn attribute of the assert construct specifies whether
simulation stops when the predicate condition is violated, or continues with a
warning.

2-39

2 Creating Custom Components and Domains

The following component file implements a variable resistor, where input
physical signal R supplies the resistance value. The assert construct checks
that this input signal is greater than or equal to zero:

component MyVariableResistor
% Variable Resistor
% Models a linear variable resistor. The relationship between voltage V
% and current I is V=I*R where R is the numerical value presented at the
% physical signal port R. If this signal becomes negative, simulation
% errors out.
%

inputs
R = { 0.0, 'Ohm' };

end

nodes
p = foundation.electrical.electrical; % +:left
n = foundation.electrical.electrical; % -:right

end

variables
i = { 0, 'A' };
v = { 0, 'V' };

end

function setup
through(i, p.i, n.i);
across(v, p.v, n.v);

end

equations
assert(R >= 0, 'Negative resistance is not modeled');
v == i*R;

end

end

2-40

Defining Component Equations

If a model contains this Variable Resistor block, and signal R becomes
negative during simulation, then simulation stops and the Simulation
Diagnostics window opens with a message similar to the following:

At time 3.200000, an assertion is triggered. Negative resistance is not m
The assertion comes from:
Block path: dc_motor1/Variable Resistor
Assert location: between line: 29, column: 14 and line: 29, column: 18 in
C:/Work/libraries/+MySimscapeLibrary/+ElectricalElements/MyVariableResist

The error message contains the following information:

• Simulation time when the assertion got triggered

• The message string (in this example, Negative resistance is not
modeled)

• An active link to the block that triggered the assertion. Click the Block
path link to highlight the block in the model diagram.

• An active link to the assert location in the component source file. Click the
Assert location link to open the Simscape source file of the component,
with the cursor at the start of violated predicate condition. For Simscape
protected files, the Assert location information is omitted from the error
message.

See the assert reference page for syntax specifics and more examples.

Working with Physical Units in Equations
In Simscape language, you declare members (such as parameters, variables,
inputs, and outputs) as value with unit, and the equations automatically
handle all unit conversions.

However, empirical formulae often employ noninteger exponents where the
base is either unitless or in known units. When working with these types of
formulae, convert the base to a unitless value using the value function and
then reapply units if needed.

For example, the following formula gives the pressure drop, in Pa, in terms
of flow rate, in m^3/s:

2-41

2 Creating Custom Components and Domains

p == k * q^1.023

where p is pressure, q is flow rate and k is some unitless constant. To write
this formula in Simscape language, use:

p == { k * value(q, 'm^3/s')^1.023, 'Pa' }

This approach works regardless of the actual units of p or q, as long as they
are commensurate with pressure and volumetric flow rate, respectively. For
example, the actual flow rate can be in gallons per minute, the equation will
still work and handle the unit conversion automatically.

2-42

Putting It Together — Complete Component Examples

Putting It Together — Complete Component Examples

In this section...

“Mechanical Component Example — Spring” on page 2-43

“Electrical Component Example — Ideal Capacitor” on page 2-44

“No-Flow Component Example — Voltage Sensor” on page 2-46

“Grounding Component Example — Electrical Reference” on page 2-47

Mechanical Component Example — Spring
The following file, spring.ssc, implements a component called spring.

The declaration section of the component contains:

• Two rotational nodes, r and c (for rod and case, respectively)

• Parameter k, with a default value of 10 N*m/rad, specifying the spring rate

• Through and Across variables, torque t and angular velocity w, to be
connected to the rotational domain at setup

• Internal variable theta, with a default value of 0 rad, specifying relative
angle, that is, deformation of the spring

The setup section of the component performs the following:

• Checks that the spring rate constant is nonnegative

• Establishes relationships between the component variables and nodes (and
therefore domain variables) using through and across functions

The equation section of the component contains two equations that define
the spring action:

• t = k * theta, that is, torque equals spring deformation times spring rate

• w = theta', that is, angular velocity equals time derivative of spring
deformation

component spring

2-43

2 Creating Custom Components and Domains

nodes

r = foundation.mechanical.rotational.rotational;

c = foundation.mechanical.rotational.rotational;

end

parameters

k = { 10, 'N*m/rad' };

end

variables

theta = { 0, 'rad' };

t = { 0, 'N*m' }; % torque through

w = { 0, 'rad/s' }; % velocity across

end

function setup

if k < 0

error('Spring rate must be greater than zero');

end

through(t, r.t, c.t); % torque through from node r to node c

across(w, r.w, c.w); % velocity across from r to c

end

equations

t == k * theta;

w == theta.der;

end

end

Electrical Component Example — Ideal Capacitor
The following file, ideal_capacitor.ssc, implements a component called
ideal_capacitor.

The declaration section of the component contains:

• Two electrical nodes, p and n (for + and – terminals, respectively)

• Two parameters: C, with a default value of 1 F, specifying the capacitance,
and V0, with a default value of 0 V, specifying the initial voltage

• Through and Across variables, current i and voltage v, to be connected to
the electrical domain at setup

The setup section of the component performs the following:

2-44

Putting It Together — Complete Component Examples

• Checks that the capacitance is nonnegative

• Establishes relationships between the component variables and nodes (and
therefore domain variables) using through and across functions

The equation section of the component contains the equation that defines
the capacitor action:

• I = C*dV/dt, that is, output current equals capacitance multiplied by the
time derivative of the input voltage

component ideal_capacitor

% Ideal Capacitor

% Models an ideal (lossless) capacitor. The output current I is related

% to the input voltage V by I = C*dV/dt where C is the capacitance.

nodes

p = foundation.electrical.electrical; % +:top

n = foundation.electrical.electrical; % -:bottom

end

parameters

C = { 1, 'F' }; % Capacitance

V0 = { 0, 'V' }; % Initial voltage

end

variables

i = { 0, 'A' }; % Current through variable

v = { 0, 'V' }; % Voltage across variable

end

function setup

if C <= { 0, 'F'}

error('Capacitance must be greater than zero')

end

through(i, p.i, n.i); % Through variable i from node p to node n

across(v, p.v, n.v); % Across variable v from p to n

v = V0; % v(t=0) == V0

end

equations

i == C*v.der; % Equation

end

end

2-45

2 Creating Custom Components and Domains

No-Flow Component Example — Voltage Sensor
The following file, voltage_sensor.ssc, implements a component called
voltage_sensor. An ideal voltage sensor has a very large resistance,
so there is no current flow through the sensor. Therefore, declaring a
Through variable, as well as writing setup and equation statements for it,
is unnecessary.

The declaration section of the component contains:

• Two electrical nodes, p and n (for + and – terminals, respectively)

• An Across variable, voltage v1, to be connected to the electrical domain at
setup. Note that a Through variable (current) is not declared.

The setup section of the component performs the following:

• Establishes the relationship between the component variable, voltage v1,
and nodes (and therefore domain variables) using the across function.
Again, note that there is no through function at setup.

The equation section of the component contains the equation that defines the
voltage sensor action:

• V == v1, that is, output voltage equals the voltage across the sensor nodes

component voltage_sensor

% Voltage Sensor

% The block represents an ideal voltage sensor. There is no current

% flowing through the component, therefore it is unnecessary to

% declare a Through variable (i1), setup a 'through' function, or

% create an equation statement (such as i1 == 0).

%

% Connection V is a physical signal port that outputs voltage value.

outputs

V = { 0.0, 'V' }; % V:bottom

end

nodes

2-46

Putting It Together — Complete Component Examples

p = foundation.electrical.electrical; % +:top

n = foundation.electrical.electrical; % -:bottom

end

variables

v1 = { 0, 'V' };

end

function setup

across(v1, p.v, n.v);

end

equations

V == v1;

end

end

Grounding Component Example — Electrical
Reference
The following file, elec_reference.ssc, implements a component called
elec_reference. This component provides an electrical ground to a circuit.
It has one node, where the voltage equals zero. It also declares a current
variable, makes it incident to the component node using the through function,
and does not specify any value for it in the equation section. Therefore, it can
take on any value and handle the current flowing into or out of the reference
node.

The declaration section of the component contains:

• One electrical node, V

• A Through variable, current i, to be connected to the electrical domain at
setup. Note that there is no need to declare an Across variable (voltage)
because this is a grounding component.

The setup section of the component performs the following:

• Uses the through function to establish the relationship between the
component variable, current i, and the domain variables. The second

2-47

2 Creating Custom Components and Domains

argument is associated with the component node, V. The third argument is
replaced with [], to indicate the reference node.

There is no need for the across function at setup.

The equation section of the component contains the equation that defines
the grounding action:

• V.v == 0, that is, voltage at the node equals zero

component elec_reference

% Electrical Reference

% Electrical reference port. A model must contain at least one

% electrical reference port (electrical ground).

nodes

V = foundation.electrical.electrical; % :top

end

variables

i = { 0, 'A' };

end

function setup

through(i, V.i, []);

end

equations

V.v == 0;

end

end

2-48

Working with Domain Parameters

Working with Domain Parameters

In this section...

“Propagation of Domain Parameters” on page 2-49

“Source Components” on page 2-50

“Propagating Components” on page 2-50

“Blocking Components” on page 2-51

“Example of Using Domain Parameters” on page 2-51

Propagation of Domain Parameters
The purpose of domain parameters is to propagate the same parameter value
to all or some of the components connected to the domain. For example, this
hydraulic domain contains one Across variable, p, one Through variable, q,
and one parameter, t.

domain t_hyd

variables

p = { 1e6, 'Pa' }; % pressure

end

variables(Balancing = true)

q = { 1e-3, 'm^3/s' }; % flow rate

end

parameters

t = { 303, 'K' }; % fluid temperature

end

end

All components with nodes connected to this domain will have access to the
fluid temperature parameter t. The component examples in the following
sections assume that this domain file, t_hyd.ssc, is located in a package
named +THyd.

When dealing with domain parameters, there are three different types of
components. There are some components that will provide the domain
parameters to the larger model, there are some that simply propagate
the parameters, and there are some that do not propagate parameters.

2-49

2 Creating Custom Components and Domains

The behavior of the component is specified by the component attribute
Propagation. The Propagation attribute may be set to one of three options:
propagates, source, or blocks. For more information, see “Attribute Lists”
on page 2-58.

Source Components
The source setting is used for components that provide parameters to other
parts of the model, source components. The following is an example of a source
component, connected to the hydraulic domain t_hyd, defined in “Propagation
of Domain Parameters” on page 2-49. This component provides the value of
the temperature parameter to the rest of the model.

component (Propagation = source) hyd_temp

% Hydraulic Temperature

% Provide hydraulic temperature to the rest of the model

parameters

t = { 333, 'K' }; % Fluid temperature

end

nodes

a = THyd.t_hyd; % t_hyd node

end

function setup

a.t = t; % set temperature at node to temperature parameter

end

end

When you generate a Simscape block from this component file, the block
dialog box will have a parameter labelled Fluid temperature. You can then
use it to enter the temperature value for the hydraulic fluid used in the model.

If a component is specified as a source component and does not set all of the
domain parameters of all of its public nodes, an error will result.

Propagating Components
The default setting for the Propagation component attribute is propagates.
Most components use this setting. If a component is configured to propagate
its domain parameters, then all public nodes connected to this domain have

2-50

Working with Domain Parameters

the same set of domain parameters. These parameters are accessible in the
setup and equation sections of the component file.

The following is an example of a propagating component h_temp_sensor,
connected to the hydraulic domain t_hyd, defined in “Propagation of Domain
Parameters” on page 2-49. It outputs the fluid temperature as a physical
signal T. This example shows how you can access domain parameters in the
equation section of a component.

component h_temp_sensor

% Hydraulic Temperature Sensor

% Measure hydraulic temperature

outputs

T = { 0, 'K' }; % T:right

end

nodes

a = THyd.t_hyd; % t_hyd node

end

equations

T == a.t; % access parameter directly from node in equations

end

end

Blocking Components
Blocking components are those components that do not propagate domain
parameters. These components have their Propagation attribute set to
blocks. It is illegal to access domain parameters in blocking components.

Example of Using Domain Parameters
The following example shows how you can test propagation of domain
parameters by putting together a simple circuit. In this example, you will:

• Create the necessary domain and component files and organize them in a
package. For more information, see “Organizing Your Simscape Files”
on page 3-3.

• Build a custom block library based on these Simscape files. For more
information, see “Converting Your Simscape Files” on page 3-4.

2-51

2 Creating Custom Components and Domains

• Use these custom blocks to build a model and test propagation of domain
parameters.

To complete the tasks listed above, follow these steps:

1 In a directory located on the MATLAB path, create a directory called +THyd.
This is your package directory, where you store all Simscape files created
in the following steps.

2 Create the domain file t_hyd.ssc, as described in “Propagation of Domain
Parameters” on page 2-49.

domain t_hyd

variables

p = { 1e6, 'Pa' }; % pressure

end

variables(Balancing = true)

q = { 1e-3, 'm^3/s' }; % flow rate

end

parameters

t = { 303, 'K' }; % fluid temperature

end

end

3 Create the component file hyd_temp.ssc, as described in “Source
Components” on page 2-50. This component provides the value of the
temperature parameter to the rest of the model.

component (Propagation = source) hyd_temp

% Hydraulic Temperature

% Provide hydraulic temperature to the rest of the model

parameters

t = { 333, 'K' }; % Fluid temperature

end

nodes

a = THyd.t_hyd; % t_hyd node

end

function setup

a.t = t; % set temperature at node to temperature parameter

end

end

2-52

Working with Domain Parameters

4 Create the component file h_temp_sensor.ssc, as described in
“Propagating Components” on page 2-50. This component measures the
value of the temperature parameter and outputs it as a physical signal.

component h_temp_sensor

% Hydraulic Temperature Sensor

% Measure hydraulic temperature

outputs

T = { 0, 'K' }; % T:right

end

nodes

a = THyd.t_hyd; % t_hyd node

end

equations

T == a.t; % access parameter directly from node in equations

end

end

5 In order to create a working circuit, you will need a reference block
corresponding to the domain type, as described in “Grounding Rules”.
Create a reference component for your t_hyd domain, as follows (name
the component h_temp_ref.ssc):

component h_temp_ref

% Hydraulic Temperature Reference

% Provide reference for thermohydraulic circuits

nodes

a = THyd.t_hyd; % t_hyd node

end

variables

q = { 0, 'm^3/s' };

end

function setup

through(q, a.q, []);

end

equations

a.p == 0;

end

end

2-53

2 Creating Custom Components and Domains

6 You can optionally define other components referencing the t_hyd domain,
but this basic set of components is enough to create a working circuit. Now
you need to build a custom block library based on these Simscape files. To
do this, at the MATLAB command prompt, type:

ssc_build THyd;

7 This command generates a file called THyd_lib.mdl in the directory that
contains your +THyd package. Before using this library, restart MATLAB to
register the new domain. Then open the custom library by typing:

THyd_lib

8 Create a new Simscape model. To do this, type:

ssc_new

This command creates a new model, prepopulated with the following blocks:

2-54

Working with Domain Parameters

9 Delete the Simulink-PS Converter block, because our model is not going to
have any Simulink input signals.

10 Drag the Hydraulic Temperature, Hydraulic Temperature Sensor, and
Hydraulic Temperature Reference blocks from THyd_lib.mdl and connect
them as follows:

2-55

2 Creating Custom Components and Domains

11 Simulate the model and notice that the scope displays the value of the
domain temperature parameter, as it is defined in the hyd_temp.ssc file,
333 K.

12 Double-click the Hydraulic Temperature block. Change the value of the
Fluid temperature parameter to 363 K.

2-56

Working with Domain Parameters

13 Simulate the model again and notice that the scope now displays the new
value of the domain temperature parameter.

2-57

2 Creating Custom Components and Domains

Attribute Lists

In this section...

“Attribute Types” on page 2-58

“Model Attributes” on page 2-58

“Member Attributes” on page 2-59

Attribute Types
The attributes appear in an AttributeList, which is a comma separated list of
pairs, as defined in the MATLAB class system grammar. Simscape language
distinguishes between two types of attributes: model attributes and member
attributes.

Model Attributes
Model attributes are applicable only to model type component.

Attribute Values Default Model
Classes

Description

Propagation propagates
source
blocks

propagates component Defines the domain data
propagation of the component.
See “Propagation of Domain
Parameters” on page 2-49.

Hidden true
false

false component Defines the visibility of the
entire component. This dictates
whether the component shows
up in a generated library or
report.

Component model attributes apply to the entire model. For example:

component (Propagation = source) MyParameterSource
% component model goes here

end

Here, Propagation is a model attribute.

2-58

Attribute Lists

Member Attributes
Member attributes apply to a whole DeclarationBlock.

Attribute Values Default Member
Classes

Description

Access public
private
protected

public all Defines the read and write
access of members. Private
members are only accessible to
the instance of the component
model and not to external
clients.

Hidden true
false

false all Sets the visibility of the member
in the user interface.

Balancing true
false

false variables If set to true, declares Through
variables for a domain. You
can set this attribute to true
only for model type domain. See
“Declaring Through and Across
Variables for a Domain” on page
2-6.

Conversion absolute
relative

absolute parameters Defines how the parameter
units are converted for use in
the setup and equation sections.
See “Specifying Parameter
Units” on page 2-8.

The attribute list for the DeclarationBlock appears after MemberClass
keyword. For example:

parameters (Access = public, Hidden = true)
% parameters go here

end

Here, all parameters in the declaration block are externally writable, but they
will not appear in the block dialog box.

2-59

2 Creating Custom Components and Domains

Subclassing and Inheritance
Subclassing allows you to build component models based on other component
models by extension. Subclassing applies only to component models, not
domain models. The syntax for subclassing is based on the MATLAB class
system syntax for subclassing using the < symbol on the declaration line of
the component model:

component MyExtendedComponent < PackageName.MyBaseComponent
% component implementation here

end

By subclassing, the subclass inherits all of the members (parameters,
variables, nodes, inputs and outputs) from the base class and can add
members of its own. When using the subclass as an external client, all public
members of the base class are available. All public and protected members
of the base class are available to the setup and equation functions of the
subclass. The subclass may not declare a member with the same identifier as
a public or protected member of the base class.

The setup function of the base class is executed before the setup function
of the subclass. The equations of both the subclass and the base class are
included in the overall system of equations.

For example, you can create the base class ElectricalBranch.ssc, which
defines an electrical branch with positive and negative external nodes, initial
current and voltage:

component ElectricalBranch
nodes

p = foundation.electrical.electrical;
n = foundation.electrical.electrical;

end
variables

i = { 0, 'A' };
v = { 0, 'V' };

end
function setup

across(v, p.v, n.v);
through(i, p.i, n.i);

2-60

Subclassing and Inheritance

end
end

If, for example, your base class resides in a package named +MyElectrical,
then you can define the subclass component Capacitor.ssc as follows:

component Capacitor < MyElectrical.ElectricalBranch
% Ideal Capacitor

parameters
c = { 1, 'F' };

end
function setup

if c <= 0
error('Capacitance must be greater than zero');

end
end
equations

i == c * v.der;
end

end

The subclass component inherits the p and n nodes, as well as the i
and v variables with initial values, from the base class. This way, the
Capacitor.ssc file contains only parameters, setup, and equations specific
to the capacitor.

2-61

2 Creating Custom Components and Domains

2-62

3

Simscape File Deployment

• “How to Generate Custom Block Libraries from Simscape Component
Files” on page 3-2

• “Customizing the Block Name and Appearance” on page 3-10

• “Checking File and Model Dependencies” on page 3-21

• “Case Study — Creating a Basic Custom Block Library” on page 3-25

• “Case Study — Creating an Electrochemical Library” on page 3-32

3 Simscape™ File Deployment

How to Generate Custom Block Libraries from Simscape
Component Files

In this section...

“Workflow Overview” on page 3-2

“Organizing Your Simscape Files” on page 3-3

“Using Source Protection for Simscape Files” on page 3-3

“Converting Your Simscape Files” on page 3-4

“When to Rebuild the Custom Library” on page 3-5

“Customizing the Library Name and Appearance” on page 3-6

“Customizing the Library Icon” on page 3-7

“Example — Creating and Customizing Block Libraries” on page 3-8

Workflow Overview
After you have created the textual component files, you need to convert them
into Simscape blocks to be able to use them in block diagrams. This process
involves:

1 Organizing your Simscape files. Simscape files must be saved in package
directories. The package hierarchy determines the resulting library
structure.

2 Optional source protection. If you want to share your models with
customers without disclosing the component or domain source, you can
generate Simscape protected files and share those.

3 Building the custom block library. You can use either the regular Simscape
source files or Simscape protected files to do this. Each top-level package
generates a separate custom Simscape block library.

Once you generate the custom Simscape library, you can open it and drag the
customized blocks from it into your models.

3-2

How to Generate Custom Block Libraries from Simscape™ Component Files

Organizing Your Simscape Files
Simscape files must be saved in package directories. For more information
on package directories, see “Scoping Classes with Packages” in the MATLAB
Classes and Object-Oriented Programming documentation. The important
points are:

• The package directory name must begin with a + character.

• The rest of the package directory name (without the + character) must be a
valid MATLAB identifier.

• The package directory’s parent directory must be on the MATLAB path.

Each package where you store your Simscape files generates a separate
custom block library.

Package directories may be organized into subdirectories, with names also
beginning with a + character. After you build a custom block library, each such
subdirectory will appear as a sublibrary under the top-level custom library.

For example, you may have a top-level package directory, named
+SimscapeCustomBlocks, and it has three subdirectories, Electrical,
Hydraulic, and Mechanical, each containing Simscape files. The
custom block library generated from this package will be called
SimscapeCustomBlocks_lib.mdl and will have three corresponding
sublibraries. For information on building custom block libraries, see
“Converting Your Simscape Files” on page 3-4.

Using Source Protection for Simscape Files
If you need to protect your proprietary source code when sharing the Simscape
files, use one of the following commands to generate Simscape protected files:

• ssc_protect— Protects individual files and directories. Once you encrypt
the files, you can share them without disclosing the component or domain
source. Use them, just as you would the Simscape source files, to build
custom block libraries with the ssc_build command.

• ssc_mirror— Creates a protected copy of a whole package in a specified
directory. Setting a flag lets you also build a custom block library from the
protected files and place it in the mirror directory, thus eliminating the

3-3

3 Simscape™ File Deployment

need to run the ssc_build command. Use the ssc_mirror command to
quickly prepare a whole package for sharing with your customers, without
disclosing the component or domain source.

Unlike Simscape source files, which have the extension .ssc, Simscape
protected files have the extension .sscp and are not humanly-readable. You
can use them, just as the Simscape source files, to build custom block libraries.
Protected files have to be organized in package directories, in the same way
as the Simscape source files. For information on organizing your files, see
“Organizing Your Simscape Files” on page 3-3. For information on building
custom block libraries, see “Converting Your Simscape Files” on page 3-4.

Converting Your Simscape Files
After you have created the textual component files and organized them in
package directories, you need to convert them into Simscape blocks to be
able to use them in block diagrams. You do this by running the ssc_build
command on the top-level package directory containing your Simscape files.
The package may contain either the regular Simscape source files or Simscape
protected files.

Note Before running the ssc_build command for the first time, you have
to set up your compiler by running mex -setup. For more information, see
“Building MEX-Files” in the MATLAB External Interfaces documentation.

For example, you may have a top-level package directory, where you store
your Simscape files, named +SimscapeCustomBlocks. To generate a custom
block library, at the MATLAB command prompt, type:

ssc_build SimscapeCustomBlocks;

Note The package directory name begins with a leading + character, whereas
the argument to ssc_build must omit the + character.

This command generates a file called SimscapeCustomBlocks_lib.mdl in the
parent directory of the top-level package (that is, in the same directory that

3-4

How to Generate Custom Block Libraries from Simscape™ Component Files

contains your +SimscapeCustomBlocks package). Because this directory is
on the MATLAB path, you can open the library by typing its name at the
MATLAB command prompt. In our example, type:

SimscapeCustomBlocks_lib

The model file generated by running the ssc_build command is the custom
Simscape library containing all the sublibraries and blocks generated from
the Simscape files located in the top-level package. Once you open the custom
Simscape library, you can drag the customized blocks from it into your models.

Creating Sublibraries
Package directories may be organized into subdirectories, with names also
beginning with a + character. After you run the ssc_build command, each
such subdirectory will appear as a sublibrary under the top-level custom
library. You can customize the name and appearance of sublibraries by using
library configuration files.

Note When you add or modify component files in package subdirectories, you
still run the ssc_build command on the top-level package directory. This
updates all the sublibraries.

You may have more than one top-level package directory, that is, more than
one package directory located in a directory on the MATLAB path. Each
top-level package directory generates a separate top-level custom library.

When to Rebuild the Custom Library
You need to rebuild the custom Simscape libraries:

• Whenever you modify the source files.

• For use on each platform. Textual component files are
platform-independent, but Simscape blocks are not. If you (or your
customers) run MATLAB on multiple platforms, generate a separate
version of custom block libraries for each platform by running the
ssc_build or ssc_mirror command on this platform.

3-5

3 Simscape™ File Deployment

• For use with each new version of Simscape software. Every time you or
your customers upgrade to a new release, you or they have to rebuild the
custom block libraries. For information on how to protect your proprietary
source code when sharing the Simscape files with customers, see “Using
Source Protection for Simscape Files” on page 3-3.

Customizing the Library Name and Appearance
Package names must be valid MATLAB identifiers. The top-level package
always generates a library model with the name package_name_lib.mdl.
However, library configuration files let you provide descriptive library
names and specify other customizations for sublibraries, generated from
subdirectories in the package hierarchy.

A library configuration file must be located in the package directory and
named lib.m.

Library configuration files are not required. You can choose to provide lib.m
for some subpackages, all subpackages, or for none of the subpackages. If a
subpackage does not contain a lib.m file, the sublibrary is built using the
default values. The top-level package can also contain a lib.m file. Options
such as library name, and other options that do not make sense for a top-level
library, are ignored during build. However, having a file with the same name
and options in the top-level package provides a uniform mechanism that lets
you easily change the library hierarchy.

The following table describes the supported options. The only option that is
required in a lib.m file is Name; others are optional.

Option Usage Description Default For
Top-Level
Package

Name libInfo.Name =
name

name will be used as the name of the
sublibrary (name of the Simulink
subsystem corresponding to the
sublibrary)

Package
name

Ignored

Annotation libInfo.Annotation
= annotation

annotation will be displayed as
annotation when you open the
sublibrary. It can be any text

No
annotation

Used in
annotation
for

3-6

How to Generate Custom Block Libraries from Simscape™ Component Files

Option Usage Description Default For
Top-Level
Package

that you want to display in the
sublibrary.

in the
library

top-level
library

ShowIcon libInfo.ShowIcon
= false

If there is no library icon
file lib.img, as described in
“Customizing the Library Icon” on
page 3-7, this option is ignored. If
there is an icon file, you can choose
to not use it by setting this option
to false.

true Ignored

ShowName libInfo.ShowName
= true

Allows you to configure whether the
sublibrary name is shown in the
parent library. If there is no library
icon file, then the default library
icon contains the library name, and
showing it again is redundant. If
you are using a library icon file,
set showName to true to display the
library name below the icon.

false Ignored

Hidden libInfo.Hidden =
true

Allows you to configure whether
the sublibrary is visible in the
parent library. Use this option
for a sublibrary containing blocks
that you do not want to expose,
for example, those kept for
compatibility reasons.

false Ignored

Customizing the Library Icon
If a subpackage contains a file named lib.img, where img is one of the
supported image file formats (such as jpg , bmp, or png), then that image file
is used for the icon representing this sublibrary in the parent library. The
icon file (lib.img) and customization file (lib.m) are independent, you can
provide one or the other, both, or none.

3-7

3 Simscape™ File Deployment

The following image file formats are supported:

• jpg

• bmp

• png

If there are multiple image files, the formats take precedence in the order
listed above. For example, if a subpackage contains both lib.jpg and
lib.bmp, lib.jpg is the image that will appear in the parent library.

You can turn off customizing the library icon by setting showIcon to false
in the library customization file lib.m. In this case, the default library icon
will be used. For more information, see “Customizing the Library Name and
Appearance” on page 3-6.

Example — Creating and Customizing Block Libraries
Consider the following directory structure:

- +MySimscapeLibrary
|-- +MechanicalElements
| |-- lib.m
| |-- lib.jpg
| |-- inertia.ssc
| |-- spring.ssc
|-- +ElectricalElements
| |-- ...
|-- +HydraulicElements
| |-- ...

This means that you have a top-level package called +MySimscapeLibrary,
which contains three subpackages, +MechanicalElements,
+ElectricalElements, and +HydraulicElements. The
+MechanicalElements package contains two component files,
inertia.ssc and spring.ssc, a library icon file lib.jpg, and the following
library configuration file lib.m:

function lib (libInfo)

3-8

How to Generate Custom Block Libraries from Simscape™ Component Files

libInfo.Name = 'Basic Mechanical Elements';

libInfo.Annotation = sprintf('This library contains basic mechanical elements');

libInfo.ShowName = true;

When you run

ssc_build MySimscapeLibrary;

the top-level package generates a library model called
MySimscapeLibrary_lib, as follows:

Notice that the sublibrary generated from the +MechanicalElements package
is presented in its parent library with a customized icon and name (Basic
Mechanical Elements).

If you double-click the Basic Mechanical Elements sublibrary, it opens as
follows:

3-9

3 Simscape™ File Deployment

Customizing the Block Name and Appearance

In this section...

“Default Block Display” on page 3-10

“How to Customize the Block Name” on page 3-12

“How to Describe the Block Purpose” on page 3-13

“How to Specify Meaningful Names for the Block Parameters” on page 3-14

“How to Customize the Names and Locations of the Block Ports” on page
3-15

“How to Customize the Block Icon” on page 3-17

“Example — Customized Block Display” on page 3-19

Default Block Display
When you build a custom block, the block name and the parameter names in
the block dialog box are derived from the component file elements. The default
block icon in the custom library is a rectangle displaying the block name. Ports
are based on the nodes, inputs, and outputs defined in the component file.

The following example shows a component file, named spring.ssc, and the
resulting library block and dialog box.

component spring
nodes

r = foundation.mechanical.rotational.rotational;
c = foundation.mechanical.rotational.rotational;

end
parameters

k = { 10, 'N*m/rad' };
end
variables

theta = { 0, 'rad' };
t = { 0, 'N*m' };
w = { 0, 'rad/s' };

end
function setup

3-10

Customizing the Block Name and Appearance

if k < 0
error('Spring rate must be greater than zero');

end
through(t, r.t, c.t);
across(w, r.w, c.w);

end
equations

t == k * theta;
w == theta.der;

end
end

If you click the View source for spring link, the spring.ssc file opens in
the MATLAB Editor window.

3-11

3 Simscape™ File Deployment

The following sections show you how to annotate the component file to
improve the block cosmetics. You can provide meaningful names for the
block itself and its parameters in the dialog box, as well as supply a short
description of its purpose. You can also substitute a custom block icon for the
default image and change the names and the default orientation of the ports.

How to Customize the Block Name
To provide a more descriptive name for the block than the name of the
component file, put it on a separate comment line just below the component
declaration. The comment line must begin with the % character. The entire
content of this line, following the % character, is interpreted as the block
name and appears exactly like that in the block icon and at the top of the
block dialog box.

For example, if you have the following component file:

component spring
%Rotational Spring
...
end

these are the resulting block icon and dialog box:

3-12

Customizing the Block Name and Appearance

How to Describe the Block Purpose
The previous section describes how the comment line immediately following
the component declaration is interpreted as the block name. Any additional
comments below that line are interpreted as the block description. You can
have more than one line of description comments. Each line must be no
longer than 80 characters and must begin with the % character. The entire
content of description comments will appear in the block dialog box and in
the Library Browser.

For example, if you have the following component file:

component spring
%Rotational Spring
% This block implements a simple rotational spring.
...
end

this is the resulting block dialog box:

3-13

3 Simscape™ File Deployment

To create a paragraph break in the block description, use a blank commented
line:

% end of one paragraph
%
% beginning of the next paragraph

How to Specify Meaningful Names for the Block
Parameters
You can specify the name of a block parameter, the way you want it to appear
in the block dialog box, as a comment immediately following the parameter
declaration. It can be located on the same line or on a separate line. The
comment must begin with the % character.

For example, if you have the following component file:

component spring
%Rotational Spring
% This block implements a simple rotational spring.
...
parameters

k = { 10, 'N*m/rad' }; % Spring rate
end

...
end

this is the resulting block dialog box:

3-14

Customizing the Block Name and Appearance

How to Customize the Names and Locations of the
Block Ports
Block ports, both conserving and Physical Signal, are based on the nodes,
inputs, and outputs defined in the component file. The default port label
corresponds to the name of the node, input, or output, as specified in the
declaration block. The default location of all ports is on the left side of the
block icon. The ports are spread equidistantly along the block side.

To control the port label and location in the block icon, add a comment
immediately following the corresponding node, input, or output declaration. It
can be on the same line or on a separate line. The comment must begin with
the % character and be of the format label:location, where label is a string
corresponding to the input port name in the block diagram, and location is
one of the following strings: left, right, top, bottom. You can locate all
ports either on one side of the block or on two opposite sides, for example left
and right, or top and bottom. You can omit the location if you want to keep
the default location of the port (on the left side).

You can also leave the port label field empty and specify just the location. In
this case, the port will not have its name displayed. For example, the following
syntax suppresses the port label and locates it on the top of the block icon:

r = foundation.mechanical.rotational.rotational; % :top

If you specify an empty comment string after a node, input, or output
declaration, the corresponding port will not be labelled and will be located on
the left side of the block icon.

3-15

3 Simscape™ File Deployment

The following are examples of node declarations and the resulting block icons.

Syntax Block Icon

nodes

r = foundation.mechanical.rotational.rotational;

c = foundation.mechanical.rotational.rotational;

end

nodes

r = foundation.mechanical.rotational.rotational; % rod

c = foundation.mechanical.rotational.rotational; % case

end

nodes

r = foundation.mechanical.rotational.rotational;

c = foundation.mechanical.rotational.rotational; % c:right

end

nodes

r = foundation.mechanical.rotational.rotational; % rod

c = foundation.mechanical.rotational.rotational; % case:right

end

3-16

Customizing the Block Name and Appearance

Syntax Block Icon

nodes

r = foundation.mechanical.rotational.rotational; % rod

c = foundation.mechanical.rotational.rotational; % :right

end

nodes

r = foundation.mechanical.rotational.rotational; %

c = foundation.mechanical.rotational.rotational; % case:right

end

How to Customize the Block Icon
If the subpackage containing the component file (for example, spring.ssc)
also contains a file named spring.img, where img is one of the supported
image file formats (such as jpg , bmp, or png), then that image file is used for
the icon representing this block in the custom library.

The following image file formats are supported:

• jpg

• bmp

• png

If there are multiple image files, the formats take precedence in the order
listed above. For example, if the subpackage contains both spring.jpg and
spring.bmp, spring.jpg is the image that will appear in the custom library.

3-17

3 Simscape™ File Deployment

Specifying Scaling and Rotation Properties of the Custom Block
Icon
When you use an image file to represent a component in the custom block
library, the following syntax in the component file lets you specify the scaling
and rotation properties of the image file:

component name
% [CustomName [: scale [: rotation]]]
...

where

name Component name

CustomName Customized block name, specified as described in
“How to Customize the Block Name” on page 3-12.
Leading and trailing white spaces are removed.

scale A scalar number, for example, 2.0, which specifies
the desired scaling of the block icon. When an image
file is used as a block icon, by default its shortest size
is 40 pixels, with the image aspect ratio preserved.
For example, if your custom image is stored in a
.jpg file of 80x120 pixels, then the default block icon
size will be 40x60 pixels. If you specify a scale of
0.5, then the block icon size will be 20x30 pixels.You
cannot specify MATLAB expressions for the scale,
just numbers.

rotation Specifies whether the block icon rotates with the
block:
• rotates means that the icon rotates when you
rotate the block. This is the default behavior.

• fixedmeans that the ports rotate when you rotate
the block, but the icon always stays in default
orientation.

For example, the following syntax

component spring
% Rotational Spring : 0.5 : fixed

3-18

Customizing the Block Name and Appearance

specifies that the spring image size is scaled to half of its default size and
always stays in its default orientation, regardless of the block rotation.

Example — Customized Block Display
The following shows a complete example of a component file with annotation
and the resulting library block and dialog box. The file is named spring.ssc,
and the package contains the image file spring.jpg, as described in the
previous section, “How to Customize the Block Icon” on page 3-17.

component spring
% Rotational Spring
% This block implements a simple rotational spring.

nodes
r = foundation.mechanical.rotational.rotational; % rod
c = foundation.mechanical.rotational.rotational; % case:right

end
parameters

k = { 10, 'N*m/rad' }; % Spring rate
end
variables

theta = { 0, 'rad' };
t = { 0, 'N*m' };
w = { 0, 'rad/s' };

end
function setup

if k < 0
error('Spring rate must be greater than zero');

end
through(t, r.t, c.t);
across(w, r.w, c.w);

end
equations

t == k * theta;
w == theta.der;

end
end

3-19

3 Simscape™ File Deployment

3-20

Checking File and Model Dependencies

Checking File and Model Dependencies

In this section...

“Why Check File and Model Dependencies?” on page 3-21

“Checking Dependencies of Protected Files” on page 3-22

“Checking Simscape File Dependencies” on page 3-22

“Checking Library Dependencies” on page 3-23

“Checking Model Dependencies” on page 3-23

Why Check File and Model Dependencies?
Each Simulink model requires a set of files to run successfully. These
files can include referenced models, data files, S-functions, and other files
without which the model cannot run. These required files are called model
dependencies. The Simulink Manifest Tools allow you to analyze a model to
determine its model dependencies.

Similarly, Simscape files and custom libraries also depend on certain files to
build successfully, or to correctly visualize and execute in MATLAB. These
files can include all component files for building a library, domain files,
custom image files for blocks or libraries, and so on.

Dependency analysis tools for Simscape files consist of the following
command-line options:

• simscape.dependency.file — Return the set of existing full path
dependency files and missing files for a single Simscape file, for a specific
dependency type.

• simscape.dependency.lib — Return the set of existing full path
dependency files and missing files for a Simscape custom library package.
You can optionally specify dependency type and library model file name.

• simscape.dependency.model — Return the set of Simscape related
dependency files and missing files for a given model containing Simscape
and Simulink blocks.

3-21

3 Simscape™ File Deployment

Manifest reports generated using Simulink Manifest Tools also include
dependencies for the Simscape blocks present in the model. For more
information on the Simulink Manifest Tools, see “Model Dependencies” in
the Simulink User’s Guide.

Checking Dependencies of Protected Files
If a package contains Simscape protected files, with the corresponding
Simscape source files in the same folder, the analysis returns the names of
protected files and then analyzes the source files for further dependencies.
If the package contains Simscape protected files without the corresponding
source files, the protected file names are returned without further analysis.

This way, dependency information is not exposed to a model user, who has
only protected files. However, the developer, who has both the source and
protected files, is able to perform complete dependency analysis.

Checking Simscape File Dependencies
To check dependencies for a single Simscape file, use the function
simscape.dependency.file.

For example, consider the following directory structure:

- +MySimscapeLibrary
|-- +MechanicalElements
| |-- lib.m
| |-- lib.jpg
| |-- spring.ssc
| |-- spring.jpg
| |-- ...

The top-level package, +MySimscapeLibrary, is located in a directory on the
MATLAB path.

To check dependencies for the file spring.ssc, type the following at the
MATLAB command prompt:

[a, b] = simscape.dependency.file('MySimscapeLibrary.MechanicalElements.spring')

3-22

Checking File and Model Dependencies

This command returns two cell arrays of strings: array a, containing full
path names of existing dependency files (such as spring.jpg), and array b,
containing names of missing files. If none of the files are missing, array b
is empty.

For more information, see the simscape.dependency.file function reference
page.

Checking Library Dependencies
To check dependencies for a Simscape library package, use the function
simscape.dependency.lib.

For example, to return all dependency files for a top-level package
+MySimscapeLibrary, change your working directory to the folder containing
this package and type the following at the MATLAB command prompt:

[a, b] = simscape.dependency.lib('MySimscapeLibrary')

If you are running this command from a working directory inside the package,
you can omit the library name, because it is the only argument, and type:

[a, b] = simscape.dependency.lib

This command returns two cell arrays of strings: array a, containing full
path names of all existing dependency files and array b, containing names of
missing files. If none of the files are missing, array b is empty.

To determine which files are necessary to share the library package, type:

[a, b] = simscape.dependency.lib('MySimscapeLibrary',Simscape.DependencyType.Simulink)

In this case, the arrays a and b contain all files necessary to build the library,
run the models built from its blocks, and visualize them correctly.

Checking Model Dependencies
To perform a complete dependencies check, open the model and from the top
menu bar select Tools >Model Dependencies > Generate Manifest. The
Generate Model Manifest dialog box opens. For more information, see “Model
Dependencies” in the Simulink User’s Guide.

3-23

3 Simscape™ File Deployment

To check dependencies on Simscape blocks and files only, use the function
simscape.dependency.model. For example, open the model dc_motor.mdl
and type:

[a b c d] = simscape.dependency.model('dc_motor')

This command returns two cell arrays of strings and two lists of structures.
Array a contains full path names of all existing dependency files. Array b
contains names of missing files. Structure lists c and d indicate reference
types for existing and missing reference files, respectively. Each structure
includes a field 'names' as a list of file names causing the reference, and a
field 'type' as the reference type for each file. Two reference types are used:
'Simscape component' indicates reference from a model block. 'Simscape'
indicates reference from a file.

If none of the files are missing, array b and list d are empty.

3-24

Case Study — Creating a Basic Custom Block Library

Case Study — Creating a Basic Custom Block Library

In this section...

“Getting Started” on page 3-25

“Building the Custom Library” on page 3-26

“Adding a Block” on page 3-26

“Adding Detail to a Component” on page 3-27

“Adding a Component with an Internal Variable” on page 3-29

“Customizing the Block Icon” on page 3-31

Getting Started
This case study explains how to build your own library of custom blocks based
on component files. It uses a demo library of capacitor models. The library
makes use of the Simscape Foundation electrical domain, and defines three
simple components. For more advanced topics, including adding multiple
levels of hierarchy, adding new domains, and customizing the appearance of a
library, see “Case Study — Creating an Electrochemical Library” on page 3-32.

The demo library comes built and on your path so that it is readily executable.
However, it is recommended that you copy the source files to a new directory,
for which you have write permission, and add that directory to your MATLAB
path. This will allow you to make changes and rebuild the library for yourself.
The source files for the demo library are in the following package directory:

matlabroot/toolbox/physmod/simscape/simscapedemos/+Capacitors

where matlabroot is the MATLAB root directory on your machine, as
returned by entering

matlabroot

in the MATLAB Command Window.

After copying the files, change the directory name +Capacitors to another
name, for example +MyCapacitors, so that your copy of the library builds
with a unique name.

3-25

3 Simscape™ File Deployment

Building the Custom Library
To build the library, type

ssc_build MyCapacitors

in the MATLAB Command Window. If building from within the
+MyCapacitors package directory, you can omit the argument and type just

ssc_build

When the build completes, open the generated library by typing

MyCapacitors_lib

For more information on the library build process, see “How to Generate
Custom Block Libraries from Simscape Component Files” on page 3-2.

Adding a Block
To add a block, write a corresponding component file and place it in
the package directory. For example, the Ideal Capacitor block in your
MyCapacitors_lib.mdl is produced by the IdealCapacitor.ssc file. Open
this file in the MATLAB Editor and examine its contents.

component IdealCapacitor

% Ideal Capacitor

% Models an ideal (lossless) capacitor. The output current I is related

% to the input voltage V by I = C*dV/dt where C is the capacitance.

% Copyright 2008 The MathWorks, Inc.

nodes

p = foundation.electrical.electrical; % +:top

n = foundation.electrical.electrical; % -:bottom

end

parameters

C = { 1, 'F' }; % Capacitance

V0 = { 0, 'V' }; % Initial voltage

end

variables

3-26

Case Study — Creating a Basic Custom Block Library

i = { 0, 'A' }; % Current through variable

v = { 0, 'V' }; % Voltage across variable

end

function setup

if C <= 0

error('Capacitance must be greater than zero')

end

through(i, p.i, n.i); % Through variable i from node p to node n

across(v, p.v, n.v); % Across variable v from p to n

v = V0;

end

equations

i == C*v.der; % Equation

end

end

First, let us examine the elements of the component file that affect
the block appearance. Double-click the Ideal Capacitor block in the
MyCapacitors_lib.mdl to open its dialog box, and compare the block icon and
dialog box to the contents of the IdealCapacitor.ssc file. The block name,
Ideal Capacitor, is taken from the comment on line 2. The comments on lines
3 and 4 are then taken to populate the block description in the dialog box.
The block ports are defined by the nodes section. The comment expressions
at the end of each line control the port label and location. Similarly in the
parameters section, the comments are used to define parameter names in
the block dialog box. For details, see “Customizing the Block Name and
Appearance” on page 3-10.

Also notice that in the setup section there is a check to ensure that the
capacitance value is always greater than zero. This is good practice to ensure
that a component is not used outside of its domain of validity. The Simscape
Foundation library blocks have such checks implemented where appropriate.

Adding Detail to a Component
In this demo library there are two additional components that can be used
for ultracapacitor modeling. These components are evolutions of the Ideal
Capacitor. It is good practice to incrementally build component models,
adding and testing additional features as they are added.

3-27

3 Simscape™ File Deployment

Ideal Ultracapacitor

Ultracapacitors, as their name suggests, are capacitors with a very high
capacitance value. The relationship between voltage and charge is not
constant, unlike for an ideal capacitor. Suppose a manufacturer data sheet
gives a graph of capacitance as a function of voltage, and that capacitance
increases approximately linearly with voltage from the 1 farad at zero volts to
1.5 farads when the voltage is 2.5 volts. If the capacitance voltage is denoted
v, then the capacitance can be approximated as:

C v= +1 0 2.

For a capacitor, current i and voltage v are related by the standard equation

i C
dv
dt

=

and hence

i C C v
dv
dtv= +()0

where C0 = 1 and Cv = 0.2. This equation is implemented by the following line
in the equation section of the Simscape file IdealUltraCapacitor.ssc:

i == (C0 + Cv*v)*v.der;

In order for the Simscape software to interpret this equation, the variables
(v and i) and the parameters (C0 and Cv) must be defined in the declaration

3-28

Case Study — Creating a Basic Custom Block Library

section. For more information, see “Declaring Component Variables” on page
2-7and “Declaring Component Parameters” on page 2-7.

Adding a Component with an Internal Variable
Implementing some component equations requires the use of internal
variables. An example is when implementing an ultracapacitor with resistive
losses. There are two resistive terms, the effective series resistance R, and
the self-discharge resistance Rd. Because of the topology, it is not possible to
directly express the capacitor equations in terms of the through and across
variables i and v.

Ultracapacitor with Resistive Losses

This block is implemented by the component file LossyUltraCapacitor.ssc.
Open this file in the MATLAB Editor and examine its contents.

component LossyUltraCapacitor

% Lossy Ultracapacitor

% Models an ultracapacitor with resistive losses. The capacitance C

% depends on the voltage V according to C = C0 + V*dC/dV. A

% self-discharge resistance is included in parallel with the capacitor,

% and an equivalent series resistance in series with the capacitor.

% Copyright 2008 The MathWorks, Inc.

nodes

p = foundation.electrical.electrical; % +:top

n = foundation.electrical.electrical; % -:bottom

end

3-29

3 Simscape™ File Deployment

parameters

C0 = { 1, 'F' }; % Nominal capacitance C0 at V=0

Cv = { 0.2, 'F/V'}; % Rate of change of C with voltage V

R = {2, 'Ohm' }; % Effective series resistance

Rd = {500, 'Ohm' }; % Self-discharge resistance

V0 = { 0, 'V' }; % Initial voltage

end

variables

i = { 0, 'A' }; % Current through variable

v = { 0, 'V' }; % Voltage across variable

vc = { 0, 'V' }; % Internal variable for capacitor voltage

end

function setup

if C0 <= 0

error('Nominal capacitance C0 must be greater than zero')

end

if R <= 0

error('Effective series resistance must be greater than zero')

end

if Rd <= 0

error('Self-discharge resistance must be greater than zero')

end

through(i, p.i, n.i); % Through variable i from node p to node n

across(v, p.v, n.v); % Across variable v from p to n

vc = V0;

end

equations

i == (C0 + Cv*v)*vc.der + vc/Rd; % Equation 1

v == vc + i*R; % Equation 2

end

end

The additional variable is used to denote the voltage across the capacitor, vc.
The equations can then be expressed in terms of v, i, and vc using Kirchhoff’s
current and voltage laws. Summing currents at the capacitor + node gives
the first Simscape equation:

i == (C0 + Cv*v)*v.der + vc/Rd;

Summing voltages gives the second Simscape equation:

3-30

Case Study — Creating a Basic Custom Block Library

v == vc + i*R;

As a check, the number of equations required for a component used in a
single connected network is given by the sum of the number of ports plus the
number of internal variables minus one. This is not necessarily true for all
components (for example, one exception is mass), but in general it is a good
rule of thumb. Here this gives 2 + 1 - 1 = 2.

In the Simscape file, the initial condition (initial voltage in this example) is
applied to variable vc and not v. This is because initial conditions should be
applied only to differential variables. In this case, vc is readily identifiable as
the differential variable as it has the der (differentiator) operator applied to it.

Customizing the Block Icon
The capacitor blocks in the demo library MyCapacitors_lib.mdl have icons
associated with them.

During the library build, if there is an image file in the directory with the
same name as the Simscape component file, then this is used to define
the icon for the block. For example, the Ideal Capacitor block defined by
IdealCapacitor.ssc uses the IdealCapacitor.jpg to define its block icon.
If you do not include an image file, then the block displays its name in place of
an icon. For details, see “How to Customize the Block Icon” on page 3-17.

3-31

3 Simscape™ File Deployment

Case Study — Creating an Electrochemical Library

In this section...

“Getting Started” on page 3-32

“Building the Custom Library” on page 3-33

“Defining a New Domain” on page 3-33

“Structuring the Library” on page 3-36

“Defining a Reference Component” on page 3-36

“Defining an Ideal Source Component” on page 3-37

“Defining Measurement Components” on page 3-38

“Defining Basic Components” on page 3-40

“Defining a Cross-Domain Interfacing Component” on page 3-43

“Customizing the Appearance of the Library” on page 3-45

“Using the Custom Components to Build a Model” on page 3-46

“References” on page 3-46

Getting Started
This case study explores more advanced topics of building custom Simscape
libraries. It uses a demo library for modeling electrochemical systems. The
library introduces a new electrochemical domain and defines all of the
fundamental components required to build electrochemical models, including
an electrochemical reference, through and across sensors, sources, and a
cross-domain component. The example illustrates some of the salient features
of Physical Networks modeling, such as selection of Through and Across
variables and how power is converted between domains. We suggest that you
work through the previous section, “Case Study — Creating a Basic Custom
Block Library” on page 3-25, before looking at this more advanced example.

The demo library comes built and on your path so that it is readily executable.
However, it is recommended that you copy the source files to a new directory,
for which you have write permission, and add that directory to your MATLAB
path. This will allow you to make changes and rebuild the library for yourself.
The source files for the demo library are in the following package directory:

3-32

Case Study — Creating an Electrochemical Library

matlabroot/toolbox/physmod/simscape/simscapedemos/+ElectroChem

where matlabroot is the MATLAB root directory on your machine, as
returned by entering

matlabroot

in the MATLAB Command Window.

After copying the files, change the directory name +ElectroChem to another
name, for example +MyElectroChem, so that your copy of the library builds
with a unique name.

Building the Custom Library
To build the library, type

ssc_build MyElectroChem

in the MATLAB Command Window. If building from within the
+MyElectroChem package directory, you can omit the argument and type just

ssc_build

When the build completes, open the generated library by typing

MyElectroChem_lib

For more information on the library build process, see “How to Generate
Custom Block Libraries from Simscape Component Files” on page 3-2.

Defining a New Domain
Simscape software comes with several Foundation domains, such as
mechanical translational, mechanical rotational, electrical, hydraulic, and
so on. Where possible, use these predefined domains. For example, when
creating new electrical components, use the Foundation electrical domain
foundation.electrical.electrical. This ensures that your components
can be connected to the standard Simscape blocks.

3-33

3 Simscape™ File Deployment

As an example of an application requiring the addition of a new domain,
consider a battery where the underlying equations involve both electrical
and chemical processes [1].

Electrochemical Battery Driving a Resistive Load R

Two half-cells are separated by a membrane that prevents the ions flowing
between cells, and hence electrons flow from the solid lead anode to the
platinum cathode. The two half-cell reactions are:

Pb Pb e↔ ++ −2 2

Fe Fe e2 3+ + −↔ +

The current results in the lead being oxidized and the iron being reduced,
with the overall reaction given by:

Pb Fe Pb Fe+ ↔ ++ + +2 23 2 2

The chemical reaction can be modeled using the network concepts of Through
and Across variables (for details, see “Basic Principles of Modeling Physical
Networks” in the Simscape User’s Guide). The Through variable represents
flow, and the Across variable represents effort. When selecting the Through

3-34

Case Study — Creating an Electrochemical Library

and Across variables, you should use SI units and the product of the two
variables is usually chosen to have units of power.

In the electrochemical reactions, an obvious choice for the Through variable
is the molar flow rate n of ions, measured in SI units of mol/s. The
corresponding Across variable is called chemical potential, and must have
units of J/mol to ensure that the product of Through and Across variables
has units of power, J/s. The chemical potential or Gibb’s free energy per mol
is given by:

μ μ= +0 RT aln

where μ0 is the standard state chemical potential, R is the perfect gas
constant, T is the temperature, and a is the activity. In general, the
activity can be a function of a number of different parameters, including
concentration, temperature, and pressure. Here it is assumed that the
activity is proportional to the molar concentration defined as number of moles
of solute divided by the mass of solvent.

To see the electrochemical domain definition, open the Simscape file
+MyElectroChem/ElectroChem.ssc.

domain ElectroChem

% Define through and across variables for the electrochemical domain

% Copyright 2008 The MathWorks, Inc.

variables

% Chemical potential

mu = { 1.0 'J/mol' };

end

variables(Balancing = true)

% Molar flow

ndot = { 1.0 'mol/s' };

end

end

3-35

3 Simscape™ File Deployment

The molar fundamental dimension and unit is predefined in the Simscape
unit registry. If it had not been, then you could have added it with:

pm_adddimension(`mole','mol')

Structuring the Library
It is good practice to structure a library by adding hierarchy. To do this, you
can subdivide the package directory into subdirectories, each subdirectory
name starting with the + character. If you look at the +MyElectroChem
directory, you will see that it has subdirectories +Elements, +Sensors, and
+Sources. Open the library by typing MyElectroChem_lib, and you will see
the three corresponding sublibraries.

Defining a Reference Component
A physical network must have a reference block, against which Across
variables are measured. So, for example, the Foundation library contains the
Electrical Reference block for the electrical domain, Mechanical Rotational
Reference block for the rotational mechanical domain, and so on. The
electrochemical zero chemical potential is defined by the component file
+MyElectroChem/+Elements/Reference.ssc.

component Reference

% Chemical Reference

% Port A is a zero chemical potential reference port.

% Copyright 2008 The MathWorks, Inc.

3-36

Case Study — Creating an Electrochemical Library

nodes

A = ElectroChem.ElectroChem; % A:top

end

variables

ndot = { 1.0 'mol/s' };

end

function setup

through(ndot, A.ndot, []);

end

equations

% Equations

A.mu == 0;

end

end

The component has one electrochemical port, named A. The chemical potential
is defined as zero by equation:

mu == 0;

Variable mu is defined as the across variable from the A port to zero with the
following line at setup, the empty square brackets denoting the zero reference:

across(mu, A.mu, []);

Defining an Ideal Source Component
An ideal Across source provides a constant value for the Across
variable regardless of the value of the Through variable. In the
electrical domain, this corresponds to the DC Voltage Source block
in the Foundation library. In the demo library, the component file
+MyElectroChem/+Sources/ChemPotentialSource.ssc implements the
equivalent source for the chemical domain.

component ChemPotentialSource

% Constant Potential Source

% Provides a constant chemical potential between ports A and B.

% Copyright 2008 The MathWorks, Inc.

nodes

3-37

3 Simscape™ File Deployment

A = ElectroChem.ElectroChem; % A:top

B = ElectroChem.ElectroChem; % B:bottom

end

parameters

mu0 = {0, 'J/mol'}; % Chemical potential

end

variables

ndot = { 0, 'mol/s' };

mu = { 0, 'J/mol' };

end

function setup

across(mu, A.mu, B.mu); % Assign mu to across variable from A to B

through(ndot, A.ndot, B.ndot); % Assign ndot to through variable from A to B

end

equations

% Equations

mu == mu0;

end

end

The dual of an ideal Across source is an ideal Through source, which
maintains the Through variable to some set value regardless of the value of
the Across variable. In the electrical domain, this corresponds to the DC
Current Source block in the Foundation library. In the demo library, this
source is not implemented.

Defining Measurement Components
Every domain requires both a Through and an Across
measurement block. In the demo library, the component file
+MyElectroChem/+Sensors/SensorThrough.ssc implements a molar flow
rate sensor.

component SensorThrough

% Molar Flow Sensor

% Returns the value of the molar flow between the A and the B port

% to the physical signal port PS.

% Copyright 2008 The MathWorks, Inc.

3-38

Case Study — Creating an Electrochemical Library

nodes

A = ElectroChem.ElectroChem; % A:top

B = ElectroChem.ElectroChem; % B:bottom

end

outputs

out = { 0, 'mol/s' }; % PS:top

end

variables

ndot = { 0, 'mol/s' };

mu = { 0, 'J/mol' };

end

function setup

through(ndot, A.ndot, B.ndot); % Assign ndot to through variable from A to B

across(mu, A.mu, B.mu); % Assign mu to across variable from A to B

end

equations

% Equations

mu == 0; % No potential drop

out == ndot; % Equate value of molar flow to PS output

end

end

The flow rate is presented as a Physical Signal, which can then in turn be
passed to Simulink via a PS-Simulink Converter block. The equation section
requires two equations—one to assign the value of the Through variable to the
Physical Signal output, and one to define the relationship between Through
and Across variables for the sensor. In this case, an ideal flow sensor has zero
potential drop, that is mu == 0, where mu is the chemical potential.

The component file +MyElectroChem/+Sensors/SensorAcross.ssc
implements a chemical potential sensor.

component SensorAcross

% Chemical Potential Sensor

% Returns the value of the chemical potential across the A and B ports

% to the physical signal port PS.

% Copyright 2008 The MathWorks, Inc.

3-39

3 Simscape™ File Deployment

nodes

A = ElectroChem.ElectroChem; % A:top

B = ElectroChem.ElectroChem; % B:bottom

end

outputs

out = { 0, 'J/mol' }; % PS:top

end

variables

ndot = { 0, 'mol/s' };

mu = { 0, 'J/mol' };

end

function setup

through(ndot, A.ndot, B.ndot); % Assign ndot to through variable from A to B

across(mu, A.mu, B.mu); % Assign mu to across variable from A to B

end

equations

% Equations

ndot == 0; % Draws no molar flow

out == mu; % Equate value of chemical potential difference to PS output

end

end

The chemical potential is presented as a Physical Signal, which can then in
turn be passed to Simulink via a PS-Simulink Converter block. The equation
section requires two equations—one to assign the value of the Across variable
to the Physical Signal output, and one to define the relationship between
Through and Across variables for the sensor. In this case, an ideal chemical
potential sensor draws no flow, that is ndot == 0, where ndot is the flow rate.

Defining Basic Components
Having created the measurement and reference blocks, the next step is to
create blocks that define behavioral relationships between the Through and
Across variables. In the electrical domain, for example, such components
are resistor, capacitor, and inductor.

As an example of a basic electrochemical component, consider the chemical
reduction or oxidation of an ion, which can be thought of as the electrochemical

3-40

Case Study — Creating an Electrochemical Library

equivalent of a nonlinear capacitor. The defining equations in terms of
Through and Across variables ν and μ are:

n = ν

a
n

C M
=

0

μ μ= +0 RT aln

where n is the number of moles of the ion, C0 is the standard concentration of
1 mol/kg, and M is the mass of the solute.

To see the implementation of these equations, open the file
+MyElectroChem/+Elements/ChemEnergyStore.ssc.

component ChemEnergyStore

% Chemical Energy Store

% Represents a solution of dissolved ions. The port A presents the

% chemical potential defined by mu0 + log(n/(C0*M))*R*T where mu0 is the

% standard state oxidising potential, n is the number of moles of the ion,

% C0 is the standard concentration of 1 mol/kg, M is the mass of solvent,

% R is the universal gas constant, and T is the temperature.

% Copyright 2008 The MathWorks, Inc.

nodes

A = ElectroChem.ElectroChem; % A:top

end

parameters

mu0 = {-7.42e+04, 'J/mol'}; % Standard state oxidising potential

n0 = {0.01, 'mol'}; % Initial quantity of ions

m_solvent = {1, 'kg'}; % Mass of solvent

T = {300, 'K'}; % Temperature

end

parameters (Access=private)

R = {8.314472, '(J/K)/mol'}; % Universal gas constant

C0 = {1, 'mol/kg'}; % Standard concentration

n1 = {1e-10, 'mol'}; % Minimum number of moles

3-41

3 Simscape™ File Deployment

end

variables

ndot = { 0, 'mol/s' };

mu = { 0, 'J/mol' };

n = {0.01, 'mol'}; % Quantity of ions

end

function setup

through(ndot, A.ndot, []); % Through variable ndot

across(mu, A.mu, []); % Across variable mu

n = n0;

end

equations

% Equations

n.der == ndot;

if n > n1

mu == mu0 + log(n/(C0*m_solvent))*R*T;

else

mu == mu0 + (log(n1/(C0*m_solvent)) + n/n1 - 1)*R*T;

end

end

end

This component introduces two Simscape language features not yet used in
the blocks looked at so far. These are:

• Use of a conditional statement in the equation section. This is required to
prevent taking the logarithm of zero. Hence if the molar concentration is
less than the specified level n1, then the operand of the logarithm function
is limited. Without this protection, the solver could perturb the value of
n to zero or less.

• Definition of private parameters that can be used in the setup or
equation sections. Here the Universal Gas constant (R) and the Standard
Concentration (C0) are defined as private parameters. Their values could
equally well be used directly in the equations, but this would reduce
readability of the definition. Similarly, the lower limit on the molar
concentration n1 is also defined as a private parameter, but could equally
well have been exposed to the user.

3-42

Case Study — Creating an Electrochemical Library

Defining a Cross-Domain Interfacing Component
Cross-domain blocks allow the interchange of energy between domains. For
example, the Rotational Electromechanical Converter block in the Foundation
library converts between electrical and rotational mechanical energy. To
relate the two sets of Through and Across variables, two equations are
required. The first comes from an underlying physical law, and the second
from summing the powers from the two domains into the converter, which
must total zero.

As an example of an interfacing component, consider the electrochemical
half-cell. The chemical molar flow rate and the electrical current are related
by Faraday’s law, which requires that:

ν = i
zF

where ν is the molar flow rate, i is the current, z is the number of electrons per
ion, and F is the Faraday constant. The second equation comes from equating
the electrical and chemical powers:

V V i2 1 2 1−() = −()μ μ ν

which can be rewritten as:

V V
i zF2 1 2 1

2 1−() = −() = −μ μ ν μ μ

This is the Nernst equation written in terms of chemical potential difference,
(μ2 – μ1). These chemical-electrical converter equations are implemented by
the component file +MyElectroChem/+Elements/Chem2Elec.ssc.

component Chem2Elec

% Chemical to Electrical Converter

% Converts chemical energy into electrical energy (and vice-versa

% assuming no losses. The electrical current flow i is related to the

% molar flow of electrons ndot by i = -ndot*z*F where F is the Faraday

% constant and z is the number of exchanged electrons.

% Copyright 2008-2009 The MathWorks, Inc.

3-43

3 Simscape™ File Deployment

nodes

p = foundation.electrical.electrical; % +:top

n = foundation.electrical.electrical; % -:top

A = ElectroChem.ElectroChem; % A:bottom

B = ElectroChem.ElectroChem; % B:bottom

end

parameters

z = {1, '1'}; % Number of exchanged electrons

end

parameters (Access=private)

F = {9.6485309e4, 'c/mol'}; % Faraday constant

end

variables

i = { 0, 'A' };

v = { 0, 'V' };

ndot = { 0, 'mol/s' };

mu = { 0, 'J/mol' };

end

function setup

through(i, p.i, n.i); % Through variable i from node p to node n

across(v, p.v, n.v); % Across variable v from p to n

through(ndot, A.ndot, B.ndot); % Through variable ndot from node A to node B

across(mu, A.mu, B.mu); % Across variable mu from A to B

end

equations

% Equations

let

k = 1/(z*F);

in

v == k*mu; % From equating power

ndot == -k*i; % Balance electrons (Faraday's Law)

end

end

end

Note the use of the let-in-end construction in the component equations. An
intermediate term k is declared as

3-44

Case Study — Creating an Electrochemical Library

k
zF

= 1

It is then used in both equations in the expression clause that follows.

This component has four ports but only two equations. This is because the
component interfaces two different physical networks. Each of the networks
has two ports and one equation, thus satisfying the requirement for n–1
equations, where n is the number of ports. In the case of a cross-domain
component, the two equations are coupled, thereby defining the interaction
between the two physical domains.

The Faraday constant is a hidden parameter, because it is a physical constant
that block users would not need to change. Therefore, it will not appear in the
block dialog box generated from the component file.

Customizing the Appearance of the Library
The library can be customized using lib.m files. A lib.m file located in the
top-level package directory can be used to add annotations. The name of the
top-level library model is constructed automatically during the build process
based on the top-level package name, as package_lib.mdl, but you can
add a more descriptive name to the top-level library as an annotation. For
example, open +MyElectroChem/lib.m in the MATLAB Editor. The following
line annotates the top-level library with its name:

libInfo.Annotation = sprintf('Example Electrochemical Library')

In the electrochemical library example, lib.m files are also placed in each
subpackage directory to customize the name and appearance of respective
sublibraries. For example, open +MyElectroChem/+Sensors/lib.m in the
MATLAB Editor. The following line causes the sublibrary to be named
Electrochemical Sensors:

libInfo.Name = 'Electrochemical Sensors';

In the absence of the lib.m file, the library would be named after the
subpackage name, that is, Sensors. For more information, see “Customizing
the Library Name and Appearance” on page 3-6.

3-45

3 Simscape™ File Deployment

Using the Custom Components to Build a Model
The Model Using a Customized Electrochemical Library demo
(ssc_electrochemical_battery) uses the electrochemical library to model a
lead-iron battery. See the demo help for further information.

References
[1] Pêcheux, F., B. Allard, C. Lallement, A. Vachoux, and H. Morel.
“Modeling and Simulation of Multi-Discipline Systems using Bond Graphs
and VHDL-AMS.” International Conference on Bond Graph Modeling and
Simulation (ICBGM). New Orleans, USA, 23–27 Jan. 2005.

3-46

4

Language Reference

across Establish relationship between
component variables and nodes

assert Program customized run-time errors
and warnings

component Component model keywords

der Return time derivative of operand

domain Domain model keywords

equations Define component equations

inputs Define component inputs, that is,
Physical Signal input ports of block

nodes Define component nodes, that is,
conserving ports of block

outputs Define component outputs, that is,
Physical Signal output ports of block

parameters Specify component parameters

setup Prepare component for simulation

through Establish relationship between
component variables and nodes

time Access global simulation time

value Convert variable or parameter to
unitless value with specified unit
conversion

variables Define domain or component
variables

across

Purpose Establish relationship between component variables and nodes

Syntax across(variable1, node1.variableA, node2.variableB)

Description across(variable1, node1.variableA, node2.variableB
) establishes the following relationship between the
three arguments: variable1 is assigned the value
(node1.variableA node2.variableB). All arguments are
variables. The first one is not associated with a node. The second and
third must be associated with a node.

The following rules apply:

• All arguments must have consistent units.

• The second and third arguments do not need to be associated with the
same domain. For example, one may be associated with a one-phase
electrical domain, and the other with a 3-phase electrical.

• Either the second or the third argument may be replaced with []
to indicate the reference node.

Examples If a component declaration section contains two electrical nodes, p
and n, and a variable v = { 0, 'V' }; specifying voltage, you can
establish the following relationship in the setup section:

across(v, p.v, n.v);

This defines voltage v as an Across variable from node p to node n.

See Also through

4-2

component

Purpose Component model keywords

Syntax component
nodes
inputs
outputs
parameters
variables
function setup
equations

Description component begins the component model class definition, which is
terminated by an end keyword. Only blank lines and comments can
precede component. You must place a component model class definition
in a file of the same name with a file name extension of .ssc.

See in the Simscape Language Guide for more information on
component model definition syntax.

A component file consists of a declaration section, with one or more
member declaration blocks, followed by setup and equation sections.

The declarations section may contain any of the following member
declaration blocks.

nodes begins a nodes declaration block, which is terminated by an end
keyword. This block contains declarations for all the component nodes,
which correspond to the conserving ports of a Simscape block generated
from the component file. Each node is defined by assignment to an
existing domain. See “Declaring Component Nodes” on page 2-10 in the
Simscape Language Guide for more information.

inputs begins an inputs declaration block, which is terminated by
an end keyword. This block contains declarations for all the inputs,
which correspond to the input Physical Signal ports of a Simscape block
generated from the component file. Each input is defined as a value
with unit. See “Declaring Component Inputs and Outputs” on page 2-11
in the Simscape Language Guide for more information.

4-3

component

outputs begins an outputs declaration block, which is terminated by
an end keyword. This block contains declarations for all the outputs,
which correspond to the output Physical Signal ports of a Simscape
block generated from the component file. Each output is defined as a
value with unit. See “Declaring Component Inputs and Outputs” on
page 2-11 in the Simscape Language Guide for more information.

parameters begins a component parameters definition block, which is
terminated by an end keyword. This block contains declarations for
component parameters. Parameters will appear in the block dialog box
when the component file is brought into a block model. Each parameter
is defined as a value with unit. See “Declaring Component Parameters”
on page 2-7 in the Simscape Language Guide for more information.

variables begins a variables declaration block, which is terminated
by an end keyword. This block contains declarations for all the
variables associated with the component. Variables are internal to
the component; they will not appear in a block dialog box when the
component file is brought into a block model.

Variables can be defined either by assignment to an existing domain
variable or as a value with unit. See “Declaring Component Variables”
on page 2-7 in the Simscape Language Guide for more information.

function setup begins the setup section, which is terminated by an
end keyword. This section relates inputs, outputs, and variables to one
another by using across and through functions. It can also be used
for validating parameters, computing derived parameters, and setting
initial conditions. See “Defining Component Setup” on page 2-15 in the
Simscape Language Guide for more information.

equations begins the equation section, which is terminated by an
end keyword. This section contains the equations that define how the
component works. See “Defining Component Equations” on page 2-20 in
the Simscape Language Guide for more information.

4-4

component

Table of Attributes

For component model attributes, as well as declaration member
attributes, see “Attribute Lists” on page 2-58 in the Simscape Language
Guide.

Examples This file, named spring.ssc, defines a rotational spring.

component spring
nodes

r = foundation.mechanical.rotational.rotational;
c = foundation.mechanical.rotational.rotational;

end
parameters

k = { 10, 'N*m/rad' };
end
variables

theta = { 0, 'rad' };
t = { 0, 'N*m' };
w = { 0, 'rad/s' };

end
function setup

if k < 0
error('Spring rate must be greater than zero');

end
through(t, r.t, c.t);
across(w, r.w, c.w);

end
equations

t == k * theta;
w == theta.der;

end
end

See Also domain

4-5

der

Purpose Return time derivative of operand

Syntax der(x)
x.der

Description The equations section may contain der operator, which returns the
time derivative of its operand:

der(x) = x.der = x=
dx
dt

der operator takes any numerical expression as its argument:

• der applied to expressions that are continuous returns their time
derivative

• der applied to time argument returns 1

• der applied to expressions that are parametric or constant returns 0

• der applied to countable operands returns 0. For example, der(a<b)
returns 0 even if a and b are variables.

The return unit of der is the unit of its operand divided by seconds.

The following restrictions apply:

• You cannot form nonlinear expressions of the output from der. For
example, der(x)*der(x) would produce an error because this is no
longer a linearly implicit system.

• Higher order derivatives are not allowed. For example, der(der(x))
would produce an error.

• For a component to compile, the number of differential equations
should equal the number of differential variables.

Examples This example shows implementation for a simple dynamic system:

x x= −1

4-6

der

The Simscape file looks as follows:

component MyDynamicSystem
variables

x = 0;
end
equations

x.der == (1 - x)*{ 1, '1/s' }; % x' = 1 - x
end

end

The reason you need to multiply by { 1, '1/s' } is that (1-x) is
unitless, while the left-hand side (x.der) has the units of 1/s. Both sides
of the equation statement must have the same units.

See Also equations

4-7

assert

Purpose Program customized run-time errors and warnings

Syntax assert (predicate_condition, message, Warn = true|false);

Description The equations section may contain the assert construct, which lets
you specify customized run-time errors and warnings:

assert (predicate_condition, message, Warn = true|false);

predicate_condition The expression to be evaluated at run
time. It can be a function of time, inputs,
parameters, and variables.

message Optional text string (with single quotes)
that tells the block user why the run-time
error or warning is triggered.

Warn = true|false Optional attribute that specifies whether
simulation errors out when the predicate
condition is violated (Warn = false), or
continues with a warning (Warn = true).
The default is Warn = false.

You can use the assert construct in:

• The top-level equations.

• The if-elseif-else branches of a conditional expression.

• The expression clause and the right-hand side of the declaration
clause of a let expression.

When you use an assert construct in a branch of a conditional
expression, it is not counted towards the number of expressions in the
branch, and is therefore exempt from the general rule that the total
number of equation expressions, their dimensionality, and their order
must be the same for every branch of the if-elseif-else statement.
For example, the following is valid:

4-8

assert

if x>1
y == 1;

else
assert(b > 0);
y == 3;

end

The scope of the assert construct is defined by the scope of its branch.
In the preceding example, the predicate condition b > 0 is evaluated
only when the else branch is in effect, that is, when x is less than or
equal to 1.

Examples Run-Time Error

Generate a run-time error if the fluid volume in a reservoir becomes
negative:

assert(V >= 0, 'Insufficient fluid volume for proper operation');

During simulation, if the internal variable V (corresponding to
the volume of fluid in the reservoir) assumes a negative value,
simulation stops and outputs an error message containing the following
information:

• Simulation time when the assertion got triggered

• The message string (in this example, Insufficient fluid volume
for proper operation)

• An active link to the block that triggered the assertion. Click the
Block path link to highlight the block in the model diagram.

• An active link to the assert location in the component source file.
Click the Assert location link to open the Simscape source file
of the component, with the cursor at the start of violated predicate
condition. For Simscape protected files, the Assert location
information is omitted from the error message.

4-9

assert

Run-Time Warning

If you do not want simulation to stop, but still want to display a warning
that a certain condition has been violated, set the Warn attribute to
true. For example, if hydraulic pressure drops below fluid vapor
saturation level at some point, this condition may result in cavitation
and invalidate the modeling assumptions used in a block. You can add
the following assert construct to the hydraulic component equations:

assert(p > p_cav, 'Pressure is below vapor level; cavitation possible

In this case, if the predicate condition is violated, the simulation
continues, but the warning message appears in the MATLAB Command
Window. The format of the warning message is the same as of the error
message described in the previous example.

See Also equations

“Programming Run-Time Errors and Warnings” on page 2-39

4-10

domain

Purpose Domain model keywords

Syntax domain
variables
variables(Balancing = true)
parameters

Description domain begins the domain model class definition, which is terminated
by an end keyword. Only blank lines and comments can precede
domain. You must place a domain model class definition in a file of the
same name with a file name extension of .ssc.

See in the Simscape Language Guide for more information on domain
model definition syntax.

variables begins an Across variables declaration block, which is
terminated by an end keyword. This block contains declarations for all
the Across variables associated with the domain. A domain model class
definition can contain multiple Across variables, combined in a single
variables block. This block is required.

variables(Balancing = true) begins a Through variables declaration
block, which is terminated by an end keyword. This block contains
declarations for all the Through variables associated with the domain. A
domain model class definition can contain multiple Through variables,
combined in a single through block. This block is required.

Each variable is defined as a value with unit. See “Declaring Through
and Across Variables for a Domain” on page 2-6 in the Simscape
Language Guide for more information.

parameters begins a domain parameters declaration block, which
is terminated by an end keyword. This block contains declarations
for domain parameters. These parameters are associated with the
domain and can be propagated through the network to all components
connected to the domain. This block is optional.

See “Propagation of Domain Parameters” on page 2-49 in the Simscape
Language Guide for more information.

4-11

domain

Table of Attributes

For declaration member attributes, see “Attribute Lists” on page 2-58.

Examples This file, named rotational.ssc, declares a mechanical rotational
domain, with angular velocity as an Across variable and torque as
a Through variable.

domain rotational
% Define the mechanical rotational domain
% in terms of across and through variables

variables
w = { 1 , 'rad/s' }; % angular velocity

end

variables(Balancing = true)
t = { 1 , 'N*m' }; % torque

end

end

This file, named t_hyd.ssc, declares a hydraulic domain, with pressure
as an Across variable, flow rate as a Through variable, and an
associated domain parameter, fluid temperature.

domain t_hyd

variables

p = { 1e6, 'Pa' }; % pressure

end

variables(Balancing = true)

q = { 1e-3, 'm^3/s' }; % flow rate

end

parameters

t = { 303, 'K' }; % fluid temperature

end

end

4-12

domain

See Also component

4-13

equations

Purpose Define component equations

Syntax equations
Expression1 == Expression2;

end

Description equations begins the equation section in a component file; this
section is terminated by an end keyword. It is executed throughout
the simulation. The purpose of the equation section is to establish
the mathematical relationships among a component’s variables,
parameters, inputs, outputs, time and the time derivatives of each of
these entities. All members declared in the component are available by
their name in the equation section.

The following syntax defines a simple equation.

equations
Expression1 == Expression2;
end

The statement Expression1 == Expression2 is an equation statement.
It specifies continuous mathematical equality between two objects of
class Expression. An Expression is any valid MATLAB expression
that does not use any of the relational operators: ==, <, >, <=, >=, ~=, &&,
||. Expression may be constructed from any of the identifiers defined
in the model declaration.

The equation section may contain multiple equation statements. You
can also specify conditional equations by using if statements as follows:

equations
if Expression
ExpressionList
{ elseif Expression
ExpressionList }
else
ExpressionList
end

4-14

equations

end

Note The total number of equation expressions, their dimensionality,
and their order must be the same for every branch of the
if-elseif-else statement.

You can define intermediate terms and use them in equations by using
let statements as follows:

equations
let
declaration clause
in
expression clause
end
end

The declaration clause assigns an identifier, or set of identifiers, on the
left-hand side of the equal sign (=) to an equation expression on the
right-hand side of the equal sign:

LetValue = EquationExpression

The expression clause defines the scope of the substitution. It
starts with the keyword in, and may contain one or more equation
expressions. All the expressions assigned to the identifiers in the
declaration clause are substituted into the equations in the expression
clause during parsing.

Note The end keyword is required at the end of a let-in-end
statement.

4-15

equations

The following rules apply to the equation section:

• EquationList is one or more objects of class EquationExpression,
separated by a comma, semicolon, or newline.

• EquationExpression can be one of:

- Expression

- Conditional expression (if-elseif-else statement)

- Let expression (let-in-end statement)

• Expression is any valid MATLAB expression. It may be formed with
the following operators:

- Arithmetic

- Relational (with restrictions, see “Use of Relational Operators in
Equations” on page 2-23)

- Logical

- Primitive Math

- Indexing

- Concatenation

• In the equation section, Expression may not be formed with the
following operators:

- Matrix Inversion

- MATLAB functions not listed in Supported Functions on page 4-17

• The colon operator may take only constants or end as its operands.

• All members of the component are accessible in the equation section,
but none are writable.

The following MATLAB functions can be used in the equation section.
The table contains additional restrictions that pertain only to the
equation section. It also indicates whether a function is discontinuous.

4-16

equations

If the function is discontinuous, it introduces a zero-crossing when used
with one or more continuous operands.

Supported Functions

Name Restrictions Discontinuous

plus

uplus

minus

uminus

mtimes

times

mpower

power

mldivide Nonmatrix
denominator

mrdivide Nonmatrix
denominator

ldivide

rdivide

eq Do not use with
continuous variables

ne Do not use with
continuous variables

lt

gt

le

ge

4-17

equations

Supported Functions (Continued)

Name Restrictions Discontinuous

and Yes

or Yes

sin

cos

tan

asin

acos

atan

atan2

log

log10

sinh

cosh

tanh

exp

sqrt For negative
numbers, calculated

as | |x sign x() . For
example, sqrt(–1) =
–1.

abs Yes

logical Yes

sign Yes

4-18

equations

Examples For a component where x and y are declared as 1x1 variables, specify an
equation of the form y = x2:

equations
y == x^2;

end

For the same component, specify the following piecewise equation:

y
x x

x
=

− <= <=⎧
⎨
⎪

⎩⎪

for

otherwise

1 1
2

This equation, written in the Simscape language, would look like:

equations
if x >= -1 && x <= 1

y == x;
else

y == x^2;
end

end

See Also assert

der

time

“Defining Component Equations” on page 2-20

4-19

inputs

Purpose Define component inputs, that is, Physical Signal input ports of block

Syntax inputs
in1 = { value , 'unit' };

end
inputs
in1 = { value , 'unit' }; % label:location

end

Description inputs begins a component inputs definition block, which is terminated
by an end keyword. This block contains declarations for component
inputs. Inputs will appear as Physical Signal input ports in the block
diagram when the component file is brought into a Simscape model.
Each input is defined as a value with unit, where value is a scalar.
Specifying an optional comment lets you control the port label and
location in the block icon.

The following syntax defines a component input, in1, as a value with
unit. value is the initial value. unit is a valid unit string, defined
in the unit registry.

inputs
in1 = { value , 'unit' };
end

You can specify the input port label and location, the way you want it to
appear in the block diagram, as a comment:

inputs
in1 = { value , 'unit' }; % label:location
end

where label is a string corresponding to the input port name in the
block diagram, location is one of the following strings: left, right,
top, bottom.

4-20

inputs

Examples The following example declares an input port s, with a default value of
1 Pa, specifying the control port of a hydraulic pressure source. In the
block diagram, this port will be named Pressure and will be located
on the top side of the block icon.

inputs
s = { 1 'Pa' }; % Pressure:top

end

See Also nodes

outputs

4-21

nodes

Purpose Define component nodes, that is, conserving ports of block

Syntax nodes
a = package_name.domain_name;

end
nodes
a = package_name.domain_name; % label:location

end

Description nodes begins a nodes declaration block, which is terminated by an end
keyword. This block contains declarations for all the component nodes,
which correspond to the conserving ports of a Simscape block generated
from the component file. Each node is defined by assignment to an
existing domain. See “Declaring Component Nodes” on page 2-10 in the
Simscape Language Guide for more information.

The following syntax defines a node, a, by associating it with a domain,
domain_name. package_name is the full path to the domain, starting
with the top package directory. For more information on packaging
your Simscape files, see “How to Generate Custom Block Libraries from
Simscape Component Files” on page 3-2 in the Simscape Language
Guide.

nodes
a = package_name.domain_name;
end

You can specify the port label and location, the way you want it to
appear in the block diagram, as a comment:

nodes
a = package_name.domain_name; % label:location
end

where label is a string corresponding to the port name in the block
diagram, location is one of the following strings: left, right, top,
bottom.

4-22

nodes

Examples The following example uses the syntax for the Simscape Foundation
mechanical rotational domain:

nodes
r = foundation.mechanical.rotational.rotational;

end

The name of the top-level package directory is +foundation. It contains
a subpackage +mechanical, with a subpackage +rotational, which in
turn contains the domain file rotational.ssc.

If you want to use your own customized rotational domain called
rotational.ssc and located at the top level of your custom package
directory +MechanicalElements, the syntax would be:

nodes
r = MechanicalElements.rotational;

end

The following example declares an electrical node using the syntax
for the Simscape Foundation electrical domain. In the block diagram,
this port will be labelled + and will be located on the top side of the
block icon.

nodes
p = foundation.electrical.electrical; % +:top

end

See Also inputs

outputs

4-23

outputs

Purpose Define component outputs, that is, Physical Signal output ports of block

Syntax outputs
out1 = { value , 'unit' };

end
outputs
out1 = { value , 'unit' }; % label:location

end

Description outputs begins a component outputs definition block, which is
terminated by an end keyword. This block contains declarations for
component outputs. Outputs will appear as Physical Signal output
ports in the block diagram when the component file is brought into a
Simscape model. Each output is defined as a value with unit, where
value is a scalar. Specifying an optional comment lets you control the
port label and location in the block icon.

The following syntax defines a component output, out1, as a value with
unit. value is the initial value. unit is a valid unit string, defined
in the unit registry.

outputs
out1 = { value , 'unit' };
end

You can specify the output port label and location, the way you want it
to appear in the block diagram, as a comment:

outputs
out1 = { value , 'unit' }; % label:location
end

where label is a string corresponding to the input port name in the
block diagram, location is one of the following strings: left, right,
top, bottom.

4-24

outputs

Examples The following example declares an output port p, with a default value of
1 Pa, specifying the output port of a hydraulic pressure sensor. In the
block diagram, this port will be named Pressure and will be located on
the bottom side of the block icon.

outputs
p = { 1 'Pa' }; % Pressure:bottom

end

See Also inputs

nodes

4-25

parameters

Purpose Specify component parameters

Syntax parameters
comp_par1 = { value , 'unit' };

end
parameters
comp_par1 = { value , 'unit' }; % Parameter name

end

Description Component parameters let you specify adjustable parameters for the
Simscape block generated from the component file. Parameters will
appear in the block dialog box and can be modified when building and
simulating a model.

parameters begins a component parameters definition block, which is
terminated by an end keyword. This block contains declarations for
component parameters. Parameters will appear in the block dialog
box when the component file is brought into a Simscape model. Each
parameter is defined as a value with unit. Specifying an optional
comment lets you control the parameter name in the block dialog box.

The following syntax defines a component parameter, comp_par1, as a
value with unit. value is the initial value. unit is a valid unit string,
defined in the unit registry.

parameters
comp_par1 = { value , 'unit' };
end

To declare a unitless parameter, you can either use the same syntax:

par1 = { value , '1' };

or omit the unit and use this syntax:

par1 = value;

Internally, however, this parameter will be treated as a two-member
value-unit array { value , '1' }.

4-26

parameters

You can specify the parameter name, the way you want it to appear in
the block dialog box, as a comment:

parameters
comp_par1 = { value , 'unit' }; % Parameter name
end

Examples The following example declares parameter k, with a default value of 10
N*m/rad, specifying the spring rate of a rotational spring. In the block
dialog box, this parameter will be named Spring rate.

parameters
k = { 10 'N*m/rad' }; % Spring rate

end

See Also variables

4-27

setup

Purpose Prepare component for simulation

Syntax function setup
[...]

end

Description function setup
[...]
end

The body of the setup function can contain assignment statements, if
and error statements, and across and through functions. The setup
function is executed once for each component instance during model
compilation. It takes no arguments and returns no arguments.

Use the setup function for the following purposes:

• Validating parameters

• Computing derived parameters

• Setting initial conditions

• Relating inputs, outputs, and variables to one another by using
across and through functions

The following rules apply:

• The setup function is executed as regular MATLAB code.

• All members declared in the component are available by their name.

• All members (such as variables, parameters) that are externally
writable are writable within setup. See “Member Summary” on page
2-4 for more information.

• Local MATLAB variables may be introduced in the setup function.
They are scoped only to the setup function.

The following restrictions apply:

4-28

setup

• Command syntax is not supported in the setup function. You must
use the function syntax. For more information, see “Command vs.
Function Syntax” in the MATLAB Programming Fundamentals
documentation.

• Persistent and global variables are not supported. For more
information, see “Types of Variables” in the MATLAB Programming
Fundamentals documentation.

• MATLAB system commands using the ! operator are not supported.

• try-end and try-catch-end constructs are not supported.

• Passing declaration members to external MATLAB functions,
for example, my_function(param1), is not supported. You can,
however, pass member values to external functions, for example,
my_function(param1.value).

Examples The following setup function checks the value of a parameter MyParam,
declared in the declaration section of a component file. It defines a
maximum allowed value for this parameter, MaxValue, and if MyParam
is greater than MaxValue, overrides it with MaxValue and issues a
warning.

function setup

MaxValue = {1, 'm' };

if MyParam > MaxValue

warning('MyParam is greater than MaxValue, overriding with MaxValue');

MyParam = MaxValue;

end

end

See Also across

through

4-29

through

Purpose Establish relationship between component variables and nodes

Syntax through(variableI, node1.variableA, node2.variableB)

Description through(variableI, node1.variableA, node2.variableB)
establishes the following relationship between the three arguments:
for each variableI, node1.variableA is assigned the value sum(
variableI) and node2.variableB is assigned the value sum(
-variableI). All arguments are variables. The first one is not
associated with a node. The second and third must be associated with
a node.

The following rules apply:

• All arguments must have consistent units.

• The second and third arguments do not need to be associated with the
same domain. For example, one may be associated with a one-phase
electrical domain, and the other with a 3-phase electrical.

• Either the second or the third argument may be replaced with []
to indicate the reference node.

Examples For example, if a component declaration section contains two electrical
nodes, p and n, and a variable i = { 0, 'A' }; specifying current,
you can establish the following relationship in the setup section:

through(i, p.i, n.i);

This defines current i as a Through variable from node p to node n.

See Also across

4-30

time

Purpose Access global simulation time

Syntax time

Description You can access global simulation time from the equation section of a
Simscape file using the time function.

time returns the simulation time in seconds.

Examples The following example illustrates y = sin (ωt):

component
parameters

w = { 1, `1/s' } % omega
end
outputs

y = 0;
end
equations

y == sin(w * time);
end

end

See Also equations

4-31

value

Purpose Convert variable or parameter to unitless value with specified unit
conversion

Syntax value(a,'unit')
value(a,'unit','type')

Description value(a,'unit') returns a unitless numerical value, converting a into
units unit. a is a variable or parameter, specified as a value with
unit, and unit is a unit defined in the unit registry. unit must be
commensurate with the units of a.

value(a,'unit','type') performs either linear or affine conversion of
temperature units and returns a unitless numerical value, converting a
into units unit. type specifies the conversion type and can be one of two
strings: linear or affine. If the type is not specified when converting
temperature units, it is assumed to be affine.

Use this function in the setup and equation sections of a Simscape file
to convert a variable or parameter into a scalar value.

Examples If a = { 10, `cm' }, then value(a, 'm') returns 0.1.

If a = { 10, `C' }, then value(a, 'K', 'linear') returns 10.

If a = { 10, `C' }, then value(a, 'K', 'affine') returns 283.15.
value(a, 'K') also returns 283.15.

If a = { 10, `cm' }, then value(a, 's') issues an error because
the units are not commensurate.

4-32

variables

Purpose Define domain or component variables

Syntax variables
comp_var1 = { value , 'unit' };

end
variables
domain_across_var1 = { value , 'unit' };

end
variables(Balancing = true)
domain_through_var1 = { value , 'unit' };

end

Description variables begins a variables declaration block, which is terminated by
an end keyword. In a component file, this block contains declarations
for all the variables associated with the component. In a domain file,
this block contains declarations for all the Across variables associated
with the domain. Additionally, domain files must have a separate
variables declaration block, with the Balancing attribute set to true,
which contains declarations for all the Through variables associated
with the domain.

In a component file, the following syntax defines an Across, Through, or
internal variable, comp_var1, as a value with unit. value is the initial
value. unit is a valid unit string, defined in the unit registry.

variables
comp_var1 = { value , 'unit' };
end

In a domain file, the following syntax defines an Across variable,
domain_across1, as a value with unit. value is the initial value. unit
is a valid unit string, defined in the unit registry.

variables
domain_across_var1 = { value , 'unit' };
end

4-33

variables

In a domain file, the following syntax defines a Through variable,
domain_through1, as a value with unit. value is the initial value. unit
is a valid unit string, defined in the unit registry.

variables(Balancing = true)
domain_through_var1 = { value , 'unit' };
end

Examples The following example initializes the variable w (angular velocity) as
0 rad/s:

variables
w = { 0, 'rad/s' };

end

The following example initializes the domain Through variable t
(torque) as 1 N*m:

variables(Balancing = true)
t = { 1, 'N*m' };

end

See Also “Declaring Component Variables” on page 2-7

“Declaring Through and Across Variables for a Domain” on page 2-6

4-34

5

Simscape Foundation
Domains

• “Domain Types and Directory Structure” on page 5-2

• “Electrical Domain” on page 5-4

• “Hydraulic Domain” on page 5-5

• “Magnetic Domain” on page 5-7

• “Mechanical Rotational Domain” on page 5-8

• “Mechanical Translational Domain” on page 5-9

• “Pneumatic Domain” on page 5-10

• “Thermal Domain” on page 5-12

5 Simscape™ Foundation Domains

Domain Types and Directory Structure
Simscape software comes with the following Foundation domains:

• “Electrical Domain” on page 5-4

• “Hydraulic Domain” on page 5-5

• “Magnetic Domain” on page 5-7

• “Mechanical Rotational Domain” on page 5-8

• “Mechanical Translational Domain” on page 5-9

• “Pneumatic Domain” on page 5-10

• “Thermal Domain” on page 5-12

Simscape Foundation libraries are organized in a package containing domain
and component Simscape files. The name of the top-level package directory is
+foundation, and the package consists of subpackages containing domain
files, structured as follows:

- +foundation
|-- +electrical
| |-- electrical.ssc
| |-- ...
|-- +hydraulic
| |-- hydraulic.ssc
| |-- ...
|-- +magnetic
| |-- magnetic.ssc
| |-- ...
|-- +mechanical
| |-- +rotational
| | |-- rotational.ssc
| | |-- ...
| |-- +translational
| | |-- translational.ssc
| | |-- ...
|-- +pneumatic
| |-- pneumatic.ssc
| |-- ...

5-2

Domain Types and Directory Structure

|-- +thermal
| |-- thermal.ssc
| |-- ...

To use a Foundation domain in a component declaration, refer to the domain
name using the full path, starting with the top package directory. The
following example uses the syntax for the Simscape Foundation mechanical
rotational domain:

r = foundation.mechanical.rotational.rotational;

The name of the top-level package directory is +foundation. It contains a
subpackage +mechanical, with a subpackage +rotational, which in turn
contains the domain file rotational.ssc.

The following sections describe each Foundation domain.

5-3

5 Simscape™ Foundation Domains

Electrical Domain
The electrical domain declaration is shown below.

domain electrical
% Electrical Domain

% Copyright 2005-2008 The MathWorks, Inc.

parameters
Temperature = { 300.15 , 'K' }; % Circuit temperature
GMIN = { 1e-12 , '1/Ohm' }; % Minimum conductance, GMIN

end

variables
v = { 0 , 'V' };

end

variables(Balancing = true)
i = { 0 , 'A' };

end

end

It contains the following variables and parameters:

• Across variable v (voltage), in volts

• Through variable i (current), in amperes

• Parameter Temperature, specifying the circuit temperature

• Parameter GMIN, specifying minimum conductance

To refer to this domain in your custom component declarations, use the
following syntax:

foundation.electrical.electrical

5-4

Hydraulic Domain

Hydraulic Domain
The hydraulic domain declaration is shown below.

domain hydraulic

% Hydraulic Domain

% Copyright 2005-2008 The MathWorks, Inc.

parameters

density = { 850 , 'kg/m^3' }; % Fluid density

viscosity_kin = { 18e-6 , 'm^2/s' }; % Kinematic viscosity

bulk = { 0.8e9 , 'Pa' }; % Bulk modulus at atm. pressure and no gas

alpha = { 0.005 , '1' }; % Relative amount of trapped air

end

variables

p = { 0 , 'Pa' };

end

variables(Balancing = true)

q = { 0 , 'm^3/s' };

end

end

It contains the following variables and parameters:

• Across variable p (pressure), in Pa

• Through variable q (flow rate), in m^3/s

• Parameter density, specifying the default fluid density

• Parameter viscosity_kin, specifying the default kinematic viscosity

• Parameter bulk, specifying the default fluid bulk modulus at atmospheric
pressure and no gas

• Parameter alpha, specifying the default relative amount of trapped air
in the fluid

5-5

5 Simscape™ Foundation Domains

To refer to this domain in your custom component declarations, use the
following syntax:

foundation.hydraulic.hydraulic

5-6

Magnetic Domain

Magnetic Domain
The magnetic domain declaration is shown below.

domain magnetic

% Magnetic Domain

% Copyright 2009 The MathWorks, Inc.

parameters

mu0 = { 4*pi*1e-7 'Wb/(m*A)' }; % Permeability constant

end

variables

mmf = { 0 , 'A' };

end

variables(Balancing = true)

phi = { 0 , 'Wb' };

end

end

It contains the following variables and parameters:

• Across variable mmf (magnetomotive force), in A

• Through variable phi (flux), in Wb

• Parameter mu0, specifying the permeability constant of the material

To refer to this domain in your custom component declarations, use the
following syntax:

foundation.magnetic.magnetic

5-7

5 Simscape™ Foundation Domains

Mechanical Rotational Domain
The mechanical rotational domain declaration is shown below.

domain rotational
% Mechanical Rotational Domain

% Copyright 2005-2008 The MathWorks, Inc.

variables
w = { 0 , 'rad/s' };

end

variables(Balancing = true)
t = { 0 , 'N*m' };

end

end

It contains the following variables:

• Across variable w (angular velocity), in rad/s

• Through variable t (torque), in N*m

To refer to this domain in your custom component declarations, use the
following syntax:

foundation.mechanical.rotational.rotational

5-8

Mechanical Translational Domain

Mechanical Translational Domain
The mechanical translational domain declaration is shown below.

domain translational
% Mechanical Translational Domain

% Copyright 2005-2008 The MathWorks, Inc.

variables
v = { 0 , 'm/s' };

end

variables(Balancing = true)
f = { 0 , 'N' };

end

end

It contains the following variables:

• Across variable v (velocity), in m/s

• Through variable f (force), in N

To refer to this domain in your custom component declarations, use the
following syntax:

foundation.mechanical.translational.translational

5-9

5 Simscape™ Foundation Domains

Pneumatic Domain
The pneumatic domain declaration is shown below.

domain pneumatic

% Pneumatic 1-D Flow Domain

% Copyright 2008-2009 The MathWorks, Inc.

parameters

gam = { 1.4, '1' }; % Ratio of specific heats

c_p = { 1005 , 'J/kg/K' }; % Specific heat at constant pressure

c_v = { 717.86 , 'J/kg/K' }; % Specific heat at constant volume

R = { 287.05, 'J/kg/K' }; % Specific gas constant

viscosity = { 18.21e-6, 'Pa*s' }; % Viscosity

Pa = { 101325, 'Pa' }; % Ambient pressure

Ta = { 293.15, 'K' }; % Ambient temperature

end

variables

p = { 0 , 'Pa' };

T = { 0 , 'K' };

end

variables(Balancing = true)

G = { 0 , 'kg/s' };

Q = { 0 , 'J/s' };

end

end

It contains the following variables and parameters:

• Across variable p (pressure), in Pa

• Through variable G (mass flow rate), in kg/s

• Across variable T (temperature), in kelvin

• Through variable Q (heat flow), in J/s

• Parameter gam, defining the ratio of specific heats

5-10

Pneumatic Domain

• Parameter c_p, defining specific heat at constant pressure

• Parameter c_v, defining specific heat at constant volume

• Parameter R, defining specific gas constant

• Parameter viscosity, specifying the gas viscosity

• Parameter Pa, specifying the ambient pressure

• Parameter Ta, specifying the ambient temperature

These parameter values correspond to gas properties for dry air and ambient
conditions of 101325 Pa and 20 degrees Celsius.

To refer to this domain in your custom component declarations, use the
following syntax:

foundation.pneumatic.pneumatic

5-11

5 Simscape™ Foundation Domains

Thermal Domain
The thermal domain declaration is shown below.

domain thermal
% Thermal domain

% Copyright 2005-2008 The MathWorks, Inc.

variables
T = { 0 , 'K' };

end

variables(Balancing = true)
Q = { 0 , 'J/s' };

end

end

It contains the following variables:

• Across variable T (temperature), in kelvin

• Through variable Q (heat flow), in J/s

To refer to this domain in your custom component declarations, use the
following syntax:

foundation.thermal.thermal

5-12

Index

IndexS
Simscape™ language 1-2

creating custom block libraries 3-2
creating sublibraries 3-5

file structure 1-9
turning component files into Simscape™

blocks 3-2
workflows 1-6

Index-1

	toc
	Simscape Language Fundamentals
	What Is the Simscape Language?
	Overview
	Basic Example — Resistor

	Typical Tasks
	About Simscape Files
	Simscape File Type
	Model Types
	Basic File Structure

	Creating a New Physical Domain
	When to Define a New Physical Domain
	How to Define a New Physical Domain

	Creating Custom Components
	Component Types and Prerequisites
	How to Create a New Behavioral Model
	Defining Domain-Wide Parameters
	Adding a Custom Block Library

	Creating Custom Components and Domains
	Declaring Domains and Components
	Declaration Section Purpose
	Definitions
	Member Declarations
	Member Summary
	Declaring a Member as a Value with Unit
	Declaring Through and Across Variables for a Domain
	Declaring Component Variables
	Declaring Component Parameters
	Specifying Parameter Units
	Case Sensitivity

	Declaring Domain Parameters
	Declaring Component Nodes
	Declaring Component Inputs and Outputs
	Example — Declaring a Mechanical Rotational Domain
	Example — Declaring a Spring Component

	Defining Component Setup
	Setup Section Purpose
	Validating Parameters
	Computing Derived Parameters
	Setting Initial Conditions
	Defining Relationship Between Component Variables and Nodes

	Defining Component Equations
	Equation Section Purpose
	Examples of Equations
	Simple Algebraic System
	Using Simulation Time in Equations

	Specifying Mathematical Equality
	Use of Relational Operators in Equations
	Equation Dimensionality
	Equation Continuity
	Using Conditional Expressions in Equations
	Restrictions
	Example

	Using Intermediate Terms in Equations
	Why Use Intermediate Terms?
	Syntax Rules
	Nested let Expressions
	Conditional let Expressions
	Identifier List in the Declarative Clause

	Programming Run-Time Errors and Warnings
	Working with Physical Units in Equations

	Putting It Together — Complete Component Examples
	Mechanical Component Example — Spring
	Electrical Component Example — Ideal Capacitor
	No-Flow Component Example — Voltage Sensor
	Grounding Component Example — Electrical Reference

	Working with Domain Parameters
	Propagation of Domain Parameters
	Source Components
	Propagating Components
	Blocking Components
	Example of Using Domain Parameters

	Attribute Lists
	Attribute Types
	Model Attributes
	Member Attributes

	Subclassing and Inheritance

	Simscape File Deployment
	How to Generate Custom Block Libraries from Simscape Component F
	Workflow Overview
	Organizing Your Simscape Files
	Using Source Protection for Simscape Files
	Converting Your Simscape Files
	Creating Sublibraries

	When to Rebuild the Custom Library
	Customizing the Library Name and Appearance
	Customizing the Library Icon
	Example — Creating and Customizing Block Libraries

	Customizing the Block Name and Appearance
	Default Block Display
	How to Customize the Block Name
	How to Describe the Block Purpose
	How to Specify Meaningful Names for the Block Parameters
	How to Customize the Names and Locations of the Block Ports
	How to Customize the Block Icon
	Specifying Scaling and Rotation Properties of the Custom Block I

	Example — Customized Block Display

	Checking File and Model Dependencies
	Why Check File and Model Dependencies?
	Checking Dependencies of Protected Files
	Checking Simscape File Dependencies
	Checking Library Dependencies
	Checking Model Dependencies

	Case Study — Creating a Basic Custom Block Library
	Getting Started
	Building the Custom Library
	Adding a Block
	Adding Detail to a Component
	Adding a Component with an Internal Variable
	Customizing the Block Icon

	Case Study — Creating an Electrochemical Library
	Getting Started
	Building the Custom Library
	Defining a New Domain
	Structuring the Library
	Defining a Reference Component
	Defining an Ideal Source Component
	Defining Measurement Components
	Defining Basic Components
	Defining a Cross-Domain Interfacing Component
	Customizing the Appearance of the Library
	Using the Custom Components to Build a Model
	References

	Language Reference
	Simscape Foundation Domains
	Domain Types and Directory Structure
	Electrical Domain
	Hydraulic Domain
	Magnetic Domain
	Mechanical Rotational Domain
	Mechanical Translational Domain
	Pneumatic Domain
	Thermal Domain

	Index

	tables
	Supported Functions

